cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A123526 Octanacci numbers.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 8, 15, 29, 57, 113, 225, 449, 897, 1793, 3578, 7141, 14253, 28449, 56785, 113345, 226241, 451585, 901377, 1799176, 3591211, 7168169, 14307889, 28558993, 57004641, 113783041, 227114497, 453327617, 904856058, 1806120905
Offset: 1

Views

Author

Danny Rorabaugh, Nov 10 2006

Keywords

Crossrefs

Cf. A254412, A254413. Indices of primes and primes in this sequence.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 50);
    Coefficients(R!( x*(1-x^2-2*x^3-3*x^4-4*x^5-5*x^6-6*x^7)/(1-x-x^2-x^3-x^4-x^5-x^6-x^7-x^8) )); // G. C. Greubel, Mar 10 2021
  • Maple
    m:=50; S:=series( x*(1-x^2-2*x^3-3*x^4-4*x^5-5*x^6-6*x^7)/(1-x-x^2-x^3-x^4-x^5-x^6-x^7-x^8), x, m+1):
    seq(coeff(S, x, j), j=1..m); # G. C. Greubel, Mar 10 2021
  • Mathematica
    Module[{nn=8,lr},lr=PadRight[{},nn,1];LinearRecurrence[lr,lr,20]] (* Harvey P. Dale, Feb 04 2015 *)
  • PARI
    Vec(x*(1-x^2-2*x^3-3*x^4-4*x^5-5*x^6-6*x^7)/(1-x-x^2-x^3-x^4-x^5-x^6-x^7-x^8) + O(x^50)) \\ Colin Barker, Oct 19 2015
    
  • Sage
    @CachedFunction
    def A123526(n):
        if (n<9): return 1
        else: return sum(A(n-j) for j in (1..8))
    [A123526(n) for n in [1..50]] # G. C. Greubel, Mar 10 2021
    

Formula

a(n)=1 for 1 <= n <= 8, a(n) = a(n-1) + a(n-2) +...+ a(n-8) for n > 8.
G.f.: x*(1 -x^2 -2*x^3 -3*x^4 -4*x^5 -5*x^6 -6*x^7)/(1 -x -x^2 -x^3 -x^4 -x^5 -x^6 -x^7 -x^8). - Colin Barker, Oct 19 2015

A254413 Primes in the 8th-order Fibonacci numbers A123526.

Original entry on oeis.org

29, 113, 449, 226241, 14307889, 113783041, 1820091580429249, 233322881089059894782836851617, 29566627412209231076314948970028097, 59243719929958343565697204780596496129, 7507351981539044730893385057192143660843521
Offset: 1

Views

Author

Robert Price, Jan 30 2015

Keywords

Comments

a(12) is too large to display here. It has 46 digits and is the 158th term in A123526.

Crossrefs

Programs

  • Mathematica
    a={1,1,1,1,1,1,1,1}; step=8; lst={}; For[n=step+1,n<=1000,n++, sum=Plus@@a; If[PrimeQ[sum], AppendTo[lst,sum]]; a=RotateLeft[a]; a[[step]]=sum]; lst
    Select[With[{lr=PadRight[{},8,1]},LinearRecurrence[lr,lr,200]],PrimeQ] (* Harvey P. Dale, Dec 03 2022 *)
Showing 1-2 of 2 results.