A254414 Number A(n,k) of tilings of a k X n rectangle using polyominoes of shape I; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 4, 7, 4, 1, 1, 8, 29, 29, 8, 1, 1, 16, 124, 257, 124, 16, 1, 1, 32, 533, 2408, 2408, 533, 32, 1, 1, 64, 2293, 22873, 50128, 22873, 2293, 64, 1, 1, 128, 9866, 217969, 1064576, 1064576, 217969, 9866, 128, 1, 1, 256, 42451, 2078716, 22734496, 50796983, 22734496, 2078716, 42451, 256, 1
Offset: 0
Examples
Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, 1, ... 1, 1, 2, 4, 8, 16, 32, ... 1, 2, 7, 29, 124, 533, 2293, ... 1, 4, 29, 257, 2408, 22873, 217969, ... 1, 8, 124, 2408, 50128, 1064576, 22734496, ... 1, 16, 533, 22873, 1064576, 50796983, 2441987149, ... 1, 32, 2293, 217969, 22734496, 2441987149, 264719566561, ...
Links
- Liang Kai, Table of n, a(n) for n = 0..1377 (terms 0..495 from Andrew Howroyd)
- Wikipedia, Polyomino
Crossrefs
Programs
-
PARI
step(v,S)={vector(#v, i, sum(j=1, #v, v[j]*2^hammingweight(bitand(S[i], S[j]))))} mkS(k)={apply(b->bitand(b,2*b+1), [2^(k-1)..2^k-1])} T(n,k)={if(k<2, if(k==0||n==0, 1, 2^(n-1)), my(S=mkS(k), v=vector(#S, i, i==1)); for(n=1, n, v=step(v,S)); vecsum(v))} \\ Andrew Howroyd, Dec 23 2019
Comments