cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A254414 Number A(n,k) of tilings of a k X n rectangle using polyominoes of shape I; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 4, 7, 4, 1, 1, 8, 29, 29, 8, 1, 1, 16, 124, 257, 124, 16, 1, 1, 32, 533, 2408, 2408, 533, 32, 1, 1, 64, 2293, 22873, 50128, 22873, 2293, 64, 1, 1, 128, 9866, 217969, 1064576, 1064576, 217969, 9866, 128, 1, 1, 256, 42451, 2078716, 22734496, 50796983, 22734496, 2078716, 42451, 256, 1
Offset: 0

Views

Author

Alois P. Heinz, Jan 30 2015

Keywords

Comments

A polyomino of shape I is a rectangle of width 1.
All columns (or rows) are linear recurrences with constant coefficients. An upper bound on the order of the recurrence is A005683(k+2). This upper bound is exact for at least 1 <= k <= 10. - Andrew Howroyd, Dec 23 2019

Examples

			Square array A(n,k) begins:
  1,  1,    1,      1,        1,          1,            1, ...
  1,  1,    2,      4,        8,         16,           32, ...
  1,  2,    7,     29,      124,        533,         2293, ...
  1,  4,   29,    257,     2408,      22873,       217969, ...
  1,  8,  124,   2408,    50128,    1064576,     22734496, ...
  1, 16,  533,  22873,  1064576,   50796983,   2441987149, ...
  1, 32, 2293, 217969, 22734496, 2441987149, 264719566561, ...
		

Crossrefs

Columns (or rows) k=0-7 give: A000012, A011782, A052961, A254124, A254125, A254126, A254458, A254607.
Main diagonal gives: A254127.
Cf. A005683.

Programs

  • PARI
    step(v,S)={vector(#v, i, sum(j=1, #v, v[j]*2^hammingweight(bitand(S[i], S[j]))))}
    mkS(k)={apply(b->bitand(b,2*b+1), [2^(k-1)..2^k-1])}
    T(n,k)={if(k<2, if(k==0||n==0, 1, 2^(n-1)), my(S=mkS(k), v=vector(#S, i, i==1)); for(n=1, n, v=step(v,S)); vecsum(v))} \\ Andrew Howroyd, Dec 23 2019