cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A254577 Total number of factors over all ordered factorizations of n.

Original entry on oeis.org

1, 1, 1, 3, 1, 5, 1, 8, 3, 5, 1, 18, 1, 5, 5, 20, 1, 18, 1, 18, 5, 5, 1, 56, 3, 5, 8, 18, 1, 31, 1, 48, 5, 5, 5, 75, 1, 5, 5, 56, 1, 31, 1, 18, 18, 5, 1, 160, 3, 18, 5, 18, 1, 56, 5, 56, 5, 5, 1, 132, 1, 5, 18, 112, 5, 31, 1, 18, 5, 31, 1, 264, 1, 5, 18, 18, 5
Offset: 1

Views

Author

Geoffrey Critzer, Feb 01 2015

Keywords

Comments

What is the limit log(Sum_{k=1..n} a(k)) / log(n) ?. - Vaclav Kotesovec, Feb 03 2019

Examples

			a(20)=18 because in the ordered factorizations of twenty: 20, 2*10, 4*5, 5*4, 10*2, 2*2*5, 2*5*2, 5*2*2 there are a total of 18 factors.
		

Crossrefs

Cf. A074206.

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; expand(x*(1+
          add(b(n/d), d=divisors(n) minus {1, n})))
        end:
    a:= n-> (p-> add(coeff(p, x, i)*i, i=1..degree(p)))(b(n)):
    seq(a(n), n=1..100);  # Alois P. Heinz, Feb 01 2015
  • Mathematica
    f[n_] := f[n] =Level[Table[Map[Prepend[#, d] &, f[n/d]], {d,Rest[Divisors[n]]}], {2}];
    f[1] = {{}};
    g[list_] := Sum[list[[i]] i, {i, 1, Length[list]}];
    Prepend[Rest[Map[g,Map[Table[Count[#, i], {i, 1, Max[#]}] &,Map[Length, Map[Sort, Table[f[n], {n, 1, 60}]], {2}]]]], 1]

Formula

Dirichlet generating function: zeta(s)/(1 - zeta(s))^2.
a(n) = Sum_{k>=1} A251683(n,k)*k.