A254577 Total number of factors over all ordered factorizations of n.
1, 1, 1, 3, 1, 5, 1, 8, 3, 5, 1, 18, 1, 5, 5, 20, 1, 18, 1, 18, 5, 5, 1, 56, 3, 5, 8, 18, 1, 31, 1, 48, 5, 5, 5, 75, 1, 5, 5, 56, 1, 31, 1, 18, 18, 5, 1, 160, 3, 18, 5, 18, 1, 56, 5, 56, 5, 5, 1, 132, 1, 5, 18, 112, 5, 31, 1, 18, 5, 31, 1, 264, 1, 5, 18, 18, 5
Offset: 1
Keywords
Examples
a(20)=18 because in the ordered factorizations of twenty: 20, 2*10, 4*5, 5*4, 10*2, 2*2*5, 2*5*2, 5*2*2 there are a total of 18 factors.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
- Vaclav Kotesovec, Graph log(Sum_{k=1..n} a(k)) / log(n), 10^8 terms
Crossrefs
Cf. A074206.
Programs
-
Maple
with(numtheory): b:= proc(n) option remember; expand(x*(1+ add(b(n/d), d=divisors(n) minus {1, n}))) end: a:= n-> (p-> add(coeff(p, x, i)*i, i=1..degree(p)))(b(n)): seq(a(n), n=1..100); # Alois P. Heinz, Feb 01 2015
-
Mathematica
f[n_] := f[n] =Level[Table[Map[Prepend[#, d] &, f[n/d]], {d,Rest[Divisors[n]]}], {2}]; f[1] = {{}}; g[list_] := Sum[list[[i]] i, {i, 1, Length[list]}]; Prepend[Rest[Map[g,Map[Table[Count[#, i], {i, 1, Max[#]}] &,Map[Length, Map[Sort, Table[f[n], {n, 1, 60}]], {2}]]]], 1]
Formula
Dirichlet generating function: zeta(s)/(1 - zeta(s))^2.
a(n) = Sum_{k>=1} A251683(n,k)*k.
Comments