cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A254594 Expansion of 1 / ((1 - x^2)^2 * (1 - x^3) * (1 - x^4)) in powers of x.

Original entry on oeis.org

1, 0, 2, 1, 4, 2, 7, 4, 11, 7, 16, 11, 23, 16, 31, 23, 41, 31, 53, 41, 67, 53, 83, 67, 102, 83, 123, 102, 147, 123, 174, 147, 204, 174, 237, 204, 274, 237, 314, 274, 358, 314, 406, 358, 458, 406, 514, 458, 575, 514, 640, 575, 710, 640, 785, 710, 865, 785, 950
Offset: 0

Views

Author

Michael Somos, Feb 02 2015

Keywords

Comments

Partitions of n into parts of size 3 and size 4 and two kinds of parts of size 2.
The number of quadruples of integers [x, u, v, w] which satisfy x > u > v > w >=0, n+5 = x+u, u+v >= x+w, and x+u+v+w is even.
Euler transform of length 4 sequence [ 0, 2, 1, 1].

Examples

			G.f. = 1 + 2*x^2 + x^3 + 4*x^4 + 2*x^5 + 7*x^6 + 4*x^7 + 11*x^8 + 7*x^9 + ...
		

Crossrefs

Programs

  • Magma
    I:=[1,0,2,1,4,2,7,4,11,7,16]; [n le 11 select I[n] else 2*Self(n-2)+Self(n-3)-2*Self(n-5)-2*Self(n-6)+Self(n-8)+2*Self(n-9)-Self(n-11): n in [1..60]]; // Vincenzo Librandi, Feb 03 2015
  • Mathematica
    a[ n_] := Quotient[ n^3 + If[ OddQ[n], 12 n^2 + 33 n + 54, 21 n^2 + 132 n + 288], 288];
    a[ n_] := Module[{s = 1, m = n}, If[ n < 0, s = -1; m = -11 - n]; s SeriesCoefficient[ 1 / ((1 - x^2)^2 (1 - x^3) (1 - x^4)), {x, 0, m}]];
    a[ n_] := Length @ FindInstance[ {x > u, u > v, v > w, w >= 0, x + u == n + 5, u + v >= x + w, x + u + v + w == 2 k}, {x, u, v, w, k}, Integers, 10^9];
    CoefficientList[Series[1 / (1 - 2 x^2 - x^3 + 2 x^5 + 2 x^6 - x^8 - 2 x^9 + x^11), {x, 0, 60}], x] (* Vincenzo Librandi, Feb 03 2015 *)
  • PARI
    {a(n) = (n^3 + if(n%2, 12*n^2 + 33*n + 54, 21*n^2 + 132*n + 288)) \ 288};
    
  • PARI
    {a(n) = my(s=1); if( n<0, s=-1; n=-11-n); s * polcoeff( 1 / ((1 - x^2)^2 * (1 - x^3) * (1 - x^4)) + x * O(x^n), n)};
    

Formula

G.f.: 1 / (1 - 2*x^2 - x^3 + 2*x^5 + 2*x^6 - x^8 - 2*x^9 + x^11).
a(n) = -a(-11-n) for all n in Z.
a(n+3) - a(n) = 0 if n even else floor((n+7)^2 / 16).
0 = a(n) - 2*a(n+2) - a(n+3) + 2*a(n+5) + 2*a(n+6) - a(n+8) - 2*a(n+9) + a(n+11) for all n in Z.
a(n) - a(n-2) = A005044(n+3) for all n in Z.
a(n) + a(n-1) = A001400(n) for all n in Z.
a(n) + a(n-2) = A165188(n+1) for all n in Z.
a(n) = A115264(n) - A115264(n-1) for all n in Z.
a(2*n) - a(2*n-6) = a(2*n+3) - a(2*n-3) = A002620(n+2) for all n in Z. - Michael Somos, Feb 11 2015
a(n) = (2*n^3+33*n^2+181*n+234+3*(3*n^2+33*n+86)*(-1)^n+84*(-1)^((2*n+1-(-1)^n)/4)-96*((1+(-1)^n)*floor(((2*n+9+(-1)^n-6*(-1)^((2*n+3+(-1)^n)/4))/24))+(1-(-1)^n)*floor(((2*n+5+(-1)^n-6*(-1)^((2*n-1+(-1)^n)/4))/24))))/576. - Luce ETIENNE, May 22 2015