cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A254613 Expansion of f(-x^3)^4 / (f(-x) * f(-x^9)) in powers of x where f() is a Ramanujan theta function.

Original entry on oeis.org

1, 1, 2, -1, 1, -1, 1, -3, -2, 1, 1, 0, -3, -1, 0, -2, -1, 0, 0, 1, 1, 0, 0, -2, 2, 0, -1, 2, -2, 2, 1, 2, 0, -1, 1, 1, -1, 3, 1, 0, -1, 3, 0, 0, 1, 1, 0, -3, -1, 0, -1, 2, 1, 1, 0, -1, -1, 3, 0, 1, 0, -2, -3, -2, -1, 0, -1, 0, 0, -2, 2, 2, -3, -1, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Feb 03 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + x + 2*x^2 - x^3 + x^4 - x^5 + x^6 - 3*x^7 - 2*x^8 + x^9 + ...
G.f. = q + q^13 + 2*q^25 - q^37 + q^49 - q^61 + q^73 - 3*q^85 - 2*q^97 + q^109 + ...
		

Crossrefs

Cf. A254612.

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^3]^4 / (QPochhammer[ x] QPochhammer[ x^9]), {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^3 + A)^4 / (eta(x + A) * eta(x^9 + A)), n))};
    
  • PARI
    {a(n) = my(A, p, e, ap, w, k12, x, y, xy); if( n<0, 0, n = 12*n + 1; w = quadgen(12); (k12 = (u,v) -> kronecker( 12,u)*kronecker( 12,v)); (xy = (m) -> if(1, my(x); for(i=1, sqrtint( m\9), if( issquare( m - 9*i^2, &x), return([x,i]))))); A = factor(n); prod(k=1, matsize(A)[1], p = A[k,1]; e = A[k,2]; if( p<5, 0, p%12==7 || p%12==11, !(e%2), ap = if( p%12==5, [x,y] = xy(2*p); if(y%3==0, 0, w*k12(x,y)), [x,y] = xy(p); k12(9*y + x, y-x) + k12(9*y - x, y+x)); polchebyshev(e, 2, ap/2))))}; /* Michael Somos, Feb 04 2015 */

Formula

Expansion of q^(-1/12) * eta(q^3)^4 / (eta(q) * eta(q^9)) in powers of q.
Euler transform of period 9 sequence [1, 1, -3, 1, 1, -3, 1, 1, -2, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (1296 t)) = 36 (t/i) f(t) where q = exp(2 Pi i t).
a(n) = b(12*n + 1) and A254612(n) = b(12*n + 5) / sqrt(3) where b() is multiplicative with b(2^e) = b(3^e) = 0^e, b(p^e) = (1 + (-1)^e)/2 if p == 7,11 (mod 12), b(p^e) = b(p)*b(p^(e-1)) - b(p^(e-2)) if p == 1,5 (mod 12) where b(p) = sqrt(3) * k12(x,y) * (if 3|y then 0 else 1) with 2*p = x^2 + 9*y^2 if p == 5 (mod 12) and b(p) = k12(9*y+x, y-x) + k12(9*y-x, y+x) with p = x^2 + 9*y^2 if p == 1 (mod 12) where k12(x,y) := Kronecker(12, x) * Kronecker(12, y). - Michael Somos, Feb 04 2015
G.f.: Product_{k>0} (1 - x^(3*k))^4 / ((1 - x^k) * (1 - x^(9*k))).
a(49*n + 4) = a(121*n + 10) = a(n).
a(n) = A254612(5*n) + (if n mod 5 = 2 then A254612((n-2)/5), otherwise 0). - Michael Somos, Feb 04 2015

A254745 Chebyshev polynomials of the second kind, U(n,x)^2, evaluated at x = sqrt(3)/2.

Original entry on oeis.org

1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4
Offset: 0

Views

Author

Michael Somos, Feb 07 2015

Keywords

Comments

Period 6: repeat [1, 3, 4, 3, 1, 0].

Examples

			G.f. = 1 + 3*x + 4*x^2 + 3*x^3 + x^4 + x^6 + 3*x^7 + 4*x^8 + 3*x^9 + ...
		

Crossrefs

Programs

  • Magma
    m:=60; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+x)/((1-x)*(1-x+x^2)))); // G. C. Greubel, Aug 03 2018
  • Mathematica
    a[ n_] := {3, 4, 3, 1, 0, 1}[[Mod[n, 6, 1]]];
    a[ n_] := ChebyshevU[ n, Sqrt[3] / 2]^2;
    CoefficientList[Series[(1 + x) / ((1 - x) (1 - x + x^2)), {x, 0, 100}], x] (* Vincenzo Librandi, Jul 14 2017 *)
  • PARI
    {a(n) = [1, 3, 4, 3, 1, 0][n%6 + 1]};
    
  • PARI
    {a(n) = simplify( polchebyshev( n, 2, quadgen(12) / 2)^2)};
    

Formula

Euler transform of length 6 sequence [3, -2, -1, 0, 0, 1].
G.f.: (1 + x) / ((1 - x) * (1 - x + x^2)) = (1 - x^2)^2 * (1 - x^3) / ((1 - x)^3 * (1 - x^6)).
a(n) = a(-2-n) = a(n+6) for all n in Z.
a(n) = (-1)^n*A078070(n) = A131027(n-1) for all n in Z.
a(n) = (n+1)*(Sum_{k=0..n} (-1)^k/(k+1)*binomial(n+k+1,2*k+1)) for n >= 0. - Werner Schulte, Jul 10 2017
Sum_{n>=0} a(n)/(n+1)*x^(n+1) = log(1-x+x^2)-2*log(1-x) for -1 < x < 1. - Werner Schulte, Jul 10 2017
a(n) = sqrt(3)*sin(Pi*n/3) - cos(Pi*n/3) + 2. - Peter Luschny, Jul 16 2017
a(n) = 2 + 2*cos(Pi/3*(n+4)) for n >= 0. - Werner Schulte, Jul 18 2017
Showing 1-2 of 2 results.