A254627 Indices of centered pentagonal numbers (A005891) that are also triangular numbers (A000217).
1, 2, 11, 28, 189, 494, 3383, 8856, 60697, 158906, 1089155, 2851444, 19544085, 51167078, 350704367, 918155952, 6293134513, 16475640050, 112925716859, 295643364940, 2026369768941, 5305104928862, 36361730124071, 95196245354568, 652484772464329
Offset: 1
Examples
2 is in the sequence because the 2nd centered pentagonal number is 6, which is also the 3rd triangular number.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Hermann Stamm-Wilbrandt, 6 interlaced bisections
- Index entries for linear recurrences with constant coefficients, signature (1,18,-18,-1,1).
Programs
-
Magma
[(2 +(1+2*(-1)^n)*Fibonacci(3*n) -(-1)^n*Lucas(3*n))/4 : n in [1..30]]; // G. C. Greubel, Apr 19 2019
-
Mathematica
CoefficientList[Series[x (x^3 + 9 x^2 - x - 1)/((x - 1) (x^2 - 4 x - 1) (x^2 + 4 x - 1)), {x, 0, 25}], x] (* Michael De Vlieger, Jun 06 2016 *) LinearRecurrence[{1,18,-18,-1,1},{1,2,11,28,189},30] (* Harvey P. Dale, Apr 23 2017 *)
-
PARI
Vec(x*(x^3+9*x^2-x-1)/((x-1)*(x^2-4*x-1)*(x^2+4*x-1)) + O(x^30))
-
PARI
{a(n) = (2 +(1+3*(-1)^n)*fibonacci(3*n) - 2*(-1)^n*fibonacci(3*n+1))/4}; \\ G. C. Greubel, Apr 19 2019
-
Sage
[(2 +(1+3*(-1)^n)*fibonacci(3*n) -2*(-1)^n*fibonacci(3*n+1))/4 for n in (1..30)] # G. C. Greubel, Apr 19 2019
Formula
a(n) = a(n-1) + 18*a(n-2) - 18*a(n-3) - a(n-4) + a(n-5).
G.f.: x*(1+x-9*x^2-x^3)/((1-x)*(1+4*x-x^2)*(1-4*x-x^2)).
a(n) = (10 - sqrt(5)*(2-sqrt(5))^n - 5*(-2+sqrt(5))^n - 2*sqrt(5)*(-2+sqrt(5))^n + sqrt(5)*(2+sqrt(5))^n + (-2-sqrt(5))^n*(-5+2*sqrt(5)))/20. - Colin Barker, Jun 06 2016
a(2*n+2) = A232970(2*n+1); a(2*n+1) = A110679(2*n). See "6 interlaced bisections" link. - Hermann Stamm-Wilbrandt, Apr 18 2019
a(n) = (2 +(1+2*(-1)^n)*Fibonacci(3*n) -(-1)^n*Lucas(3*n))/4. - G. C. Greubel, Apr 19 2019
Comments