cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A254627 Indices of centered pentagonal numbers (A005891) that are also triangular numbers (A000217).

Original entry on oeis.org

1, 2, 11, 28, 189, 494, 3383, 8856, 60697, 158906, 1089155, 2851444, 19544085, 51167078, 350704367, 918155952, 6293134513, 16475640050, 112925716859, 295643364940, 2026369768941, 5305104928862, 36361730124071, 95196245354568, 652484772464329
Offset: 1

Views

Author

Colin Barker, Feb 03 2015

Keywords

Comments

Also positive integers y in the solutions to x^2 - 5*y^2 + x + 5*y - 2 = 0, the corresponding values of x being A254626.
Also indices of centered pentagonal numbers (A005891) that are also hexagonal numbers (A000384). - Colin Barker, Feb 11 2015

Examples

			2 is in the sequence because the 2nd centered pentagonal number is 6, which is also the 3rd triangular number.
		

Crossrefs

Programs

  • Magma
    [(2 +(1+2*(-1)^n)*Fibonacci(3*n) -(-1)^n*Lucas(3*n))/4 : n in [1..30]]; // G. C. Greubel, Apr 19 2019
    
  • Mathematica
    CoefficientList[Series[x (x^3 + 9 x^2 - x - 1)/((x - 1) (x^2 - 4 x - 1) (x^2 + 4 x - 1)), {x, 0, 25}], x] (* Michael De Vlieger, Jun 06 2016 *)
    LinearRecurrence[{1,18,-18,-1,1},{1,2,11,28,189},30] (* Harvey P. Dale, Apr 23 2017 *)
  • PARI
    Vec(x*(x^3+9*x^2-x-1)/((x-1)*(x^2-4*x-1)*(x^2+4*x-1)) + O(x^30))
    
  • PARI
    {a(n) = (2 +(1+3*(-1)^n)*fibonacci(3*n) - 2*(-1)^n*fibonacci(3*n+1))/4}; \\ G. C. Greubel, Apr 19 2019
    
  • Sage
    [(2 +(1+3*(-1)^n)*fibonacci(3*n) -2*(-1)^n*fibonacci(3*n+1))/4 for n in (1..30)] # G. C. Greubel, Apr 19 2019

Formula

a(n) = a(n-1) + 18*a(n-2) - 18*a(n-3) - a(n-4) + a(n-5).
G.f.: x*(1+x-9*x^2-x^3)/((1-x)*(1+4*x-x^2)*(1-4*x-x^2)).
a(n) = (10 - sqrt(5)*(2-sqrt(5))^n - 5*(-2+sqrt(5))^n - 2*sqrt(5)*(-2+sqrt(5))^n + sqrt(5)*(2+sqrt(5))^n + (-2-sqrt(5))^n*(-5+2*sqrt(5)))/20. - Colin Barker, Jun 06 2016
a(2*n+2) = A232970(2*n+1); a(2*n+1) = A110679(2*n). See "6 interlaced bisections" link. - Hermann Stamm-Wilbrandt, Apr 18 2019
a(n) = (2 +(1+2*(-1)^n)*Fibonacci(3*n) -(-1)^n*Lucas(3*n))/4. - G. C. Greubel, Apr 19 2019