cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A254644 Fourth partial sums of fifth powers (A000584).

Original entry on oeis.org

1, 36, 381, 2336, 10326, 36552, 110022, 292512, 704847, 1567852, 3263403, 6422208, 12046268, 21675408, 37608828, 63194304, 103199469, 164281524, 255573769, 389409504, 582206130, 855534680, 1237402530, 1763779680, 2480401755, 3444885756, 4729197591, 6422513536, 8634521016, 11499207456
Offset: 1

Views

Author

Luciano Ancora, Feb 05 2015

Keywords

Examples

			Fifth differences:   1, 27,  93,  119,   120, (repeat 120) (A101100)
Fourth differences:  1, 28, 121,  240,   360,   480, ...   (A101095)
Third differences:   1, 29, 150,  390,   750,  1230, ...   (A101096)
Second differences:  1, 30, 180,  570,  1320,  2550, ...   (A101098)
First differences:   1, 31, 211,  781,  2101,  4651, ...   (A022521)
-------------------------------------------------------------------------
The fifth powers:    1, 32, 243, 1024,  3125,  7776, ...   (A000584)
-------------------------------------------------------------------------
First partial sums:  1, 33, 276, 1300,  4425, 12201, ...   (A000539)
Second partial sums: 1, 34, 310, 1610,  6035, 18236, ...   (A101092)
Third partial sums:  1, 35, 345, 1955,  7990, 26226, ...   (A101099)
Fourth partial sums: 1, 36, 381, 2336, 10326, 36552, ...   (this sequence)
		

Crossrefs

Cf. A101091 (fourth partial sums of fourth powers).

Programs

  • GAP
    List([1..30], n-> Binomial(n+4,5)*(5*(n+2)^4 -35*(n+2)^2 +36)/126); # G. C. Greubel, Aug 28 2019
  • Magma
    [Binomial(n+4,5)*(5*(n+2)^4 -35*(n+2)^2 +36)/126: n in [1..30]]; // G. C. Greubel, Aug 28 2019
    
  • Maple
    seq(binomial(n+4,5)*(5*(n+2)^4 -35*(n+2)^2 +36)/126, n=1..30); # G. C. Greubel, Aug 28 2019
  • Mathematica
    Table[n(1+n)(2+n)(3+n)(4+n)(-24 +20n +85n^2 +40n^3 +5n^4)/15120, {n, 30}] (* or *) Accumulate[Accumulate[Accumulate[Accumulate[Range[24]^5]]]] (* or *) CoefficientList[Series[(1 +26x +66x^2 +26x^3 +x^4)/(1-x)^10, {x, 0, 30}], x]
    Nest[Accumulate,Range[30]^5,4] (* or *) LinearRecurrence[{10,-45,120, -210,252,-210,120,-45,10,-1}, {1,36,381,2336,10326,36552,110022,292512, 704847,1567852},30] (* Harvey P. Dale, May 08 2016 *)
  • PARI
    vector(30, n, m=n+2; binomial(m+2,5)*(5*m^4 -35*m^2 +36)/126) \\ G. C. Greubel, Aug 28 2019
    
  • Sage
    [binomial(n+4,5)*(5*(n+2)^4 -35*(n+2)^2 +36)/126 for n in (1..30)] # G. C. Greubel, Aug 28 2019
    

Formula

G.f.: x*(1 + 26*x + 66*x^2 + 26*x^3 + x^4)/(1 - x)^10.
a(n) = n*(1 + n)*(2 + n)*(3 + n)*(4 + n)*(-24 + 20*n + 85*n^2 + 40*n^3 + 5*n^4)/15120.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + n^5.

Extensions

Edited by Bruno Berselli, Feb 10 2015