A254652 Indices of pentagonal numbers (A000326) which are also centered heptagonal numbers (A069099).
1, 4, 88, 421, 9661, 46288, 1062604, 5091241, 116876761, 559990204, 12855381088, 61593831181, 1413975042901, 6774761439688, 155524399338004, 745162164534481, 17106269952137521, 81961063337353204, 1881534170335789288, 9014971804944317941
Offset: 1
Examples
4 is in the sequence because the 4th pentagonal number is 22, which is also the 3rd centered heptagonal number.
Links
- Colin Barker, Table of n, a(n) for n = 1..980
- Index entries for linear recurrences with constant coefficients, signature (1,110,-110,-1,1).
Programs
-
Mathematica
LinearRecurrence[{1,110,-110,-1,1},{1,4,88,421,9661},30] (* Harvey P. Dale, Dec 09 2018 *)
-
PARI
Vec(-x*(x^2-4*x+1)*(x^2+7*x+1)/((x-1)*(x^4-110*x^2+1)) + O(x^100))
Formula
a(n) = a(n-1)+110*a(n-2)-110*a(n-3)-a(n-4)+a(n-5).
G.f.: -x*(x^2-4*x+1)*(x^2+7*x+1) / ((x-1)*(x^4-110*x^2+1)).
Comments