cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A254652 Indices of pentagonal numbers (A000326) which are also centered heptagonal numbers (A069099).

Original entry on oeis.org

1, 4, 88, 421, 9661, 46288, 1062604, 5091241, 116876761, 559990204, 12855381088, 61593831181, 1413975042901, 6774761439688, 155524399338004, 745162164534481, 17106269952137521, 81961063337353204, 1881534170335789288, 9014971804944317941
Offset: 1

Views

Author

Colin Barker, Feb 04 2015

Keywords

Comments

Also positive integers x in the solutions to 3*x^2 - 7*y^2 - x + 7*y - 2 = 0, the corresponding values of y being A254653.

Examples

			4 is in the sequence because the 4th pentagonal number is 22, which is also the 3rd centered heptagonal number.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,110,-110,-1,1},{1,4,88,421,9661},30] (* Harvey P. Dale, Dec 09 2018 *)
  • PARI
    Vec(-x*(x^2-4*x+1)*(x^2+7*x+1)/((x-1)*(x^4-110*x^2+1)) + O(x^100))

Formula

a(n) = a(n-1)+110*a(n-2)-110*a(n-3)-a(n-4)+a(n-5).
G.f.: -x*(x^2-4*x+1)*(x^2+7*x+1) / ((x-1)*(x^4-110*x^2+1)).

A254654 Pentagonal numbers (A000326) which are also centered heptagonal numbers (A069099).

Original entry on oeis.org

1, 22, 11572, 265651, 139997551, 3213845272, 1693690359922, 38881099834501, 20490265834338301, 470383542583947322, 247891234370134405072, 5690700059299494866551, 2998988132919620198222251, 68846088847021746311586172, 36281758184170330787958387022
Offset: 1

Views

Author

Colin Barker, Feb 04 2015

Keywords

Examples

			22 is in the sequence because it is the 4th pentagonal number and the 3rd centered heptagonal number.
		

Crossrefs

Programs

  • Magma
    I:=[1,22,11572,265651,139997551]; [n le 5 select I[n] else Self(n-1)+12098*Self(n-2)-12098*Self(n-3)-Self(n-4)+Self(n-5): n in [1..20]]; // Vincenzo Librandi, Jan 20 2017
  • Mathematica
    CoefficientList[Series[(x^4 + 21*x^3 - 548*x^2 + 21*x + 1)/((1 - x)*(x^2 - 110*x + 1)*(x^2 + 110*x + 1)), {x, 0, 20}], x] (* Wesley Ivan Hurt, Jan 19 2017 *)
    LinearRecurrence[{1,12098,-12098,-1,1},{1,22,11572,265651,139997551},20] (* Harvey P. Dale, Jan 10 2025 *)
  • PARI
    Vec(-x*(x^4+21*x^3-548*x^2+21*x+1)/((x-1)*(x^2-110*x+1)*(x^2+110*x+1)) + O(x^100))
    

Formula

a(n) = a(n-1)+12098*a(n-2)-12098*a(n-3)-a(n-4)+a(n-5).
G.f.: -x*(x^4+21*x^3-548*x^2+21*x+1) / ((x-1)*(x^2-110*x+1)*(x^2+110*x+1)).
Showing 1-2 of 2 results.