cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A088487 a(n) = Sum_{k=1..8} floor(A254864(n,k)/A254864(n-1,k)), where A254864(n,k) = n! / (n-floor(n/3^k))!.

Original entry on oeis.org

8, 10, 8, 8, 13, 8, 8, 24, 8, 8, 19, 8, 8, 22, 8, 8, 42, 8, 8, 28, 8, 8, 31, 8, 8, 86, 8, 8, 37, 8, 8, 40, 8, 8, 78, 8, 8, 46, 8, 8, 49, 8, 8, 96, 8, 8, 55, 8, 8, 58, 8, 8, 167, 8, 8, 64, 8, 8, 67, 8, 8, 132, 8, 8, 73, 8, 8, 76, 8, 8, 150, 8, 8, 82, 8, 8, 85, 8, 8, 328, 8, 8, 91, 8, 8, 94, 8, 8
Offset: 2

Views

Author

Roger L. Bagula, Nov 09 2003

Keywords

Crossrefs

Programs

  • Mathematica
    p[n_, k_]=n!/Product[i, {i, 1, n-Floor[n/3^k]}] digits=200 f[n_]=Sum[Floor[p[n, k]/p[n-1, k]], {k, 1, 8}] at=Table[f[n], {n, 2, digits}]
  • PARI
    A254864bi(n,k) = prod(i=(1+(n-(n\(3^k)))),n,i);
    A088487(n) = sum(k=1,8,(A254864bi(n,k)\A254864bi(n-1,k)));
    for(n=2, 10000, write("b088487.txt", n, " ", A088487(n)));
    
  • Scheme
    (define (A088487 n) (add (lambda (k) (floor->exact (/ (A254864bi n k) (A254864bi (- n 1) k)))) 1 8)) ;; Code for A254864bi given in A254864.
    ;; The following function implements sum_{i=lowlim..uplim} intfun(i)
    (define (add intfun lowlim uplim) (let sumloop ((i lowlim) (res 0)) (cond ((> i uplim) res) (else (sumloop (1+ i) (+ res (intfun i)))))))

Formula

a(n) = Sum_{k=1..8} floor(A254864(n,k)/A254864(n-1,k)), where A254864(n,k) = n! / (n-floor(n/3^k))!.

Extensions

Edited by Antti Karttunen, Feb 09 2015

A254876 Triangular table T(n,k) = n! / Product_{m=(n-floor((2n)/(3^k))) .. (n-floor((n)/(3^k)))} m, read by rows T(1,1), T(2,1), T(2,2), T(3,1), T(3,2), T(3,3), ...

Original entry on oeis.org

1, 1, 1, 3, 2, 2, 4, 6, 6, 6, 5, 6, 24, 24, 24, 30, 24, 120, 120, 120, 120, 84, 120, 720, 720, 720, 720, 720, 112, 720, 5040, 5040, 5040, 5040, 5040, 5040, 1008, 6480, 40320, 40320, 40320, 40320, 40320, 40320, 40320, 4320, 50400, 362880, 362880, 362880, 362880, 362880, 362880, 362880, 362880
Offset: 1

Views

Author

Antti Karttunen, Feb 09 2015

Keywords

Comments

An auxiliary array for computing A088488.

Examples

			The first rows of the triangular table:
1
1, 1
3, 2, 2
4, 6, 6, 6
5, 6, 24, 24, 24
30, 24, 120, 120, 120, 120
84, 120, 720, 720, 720, 720, 720
112, 720, 5040, 5040, 5040, 5040, 5040, 5040
1008, 6480, 40320, 40320, 40320, 40320, 40320, 40320, 40320
4320, 50400, 362880, 362880, 362880, 362880, 362880, 362880, 362880, 362880
...
		

Crossrefs

Programs

  • PARI
    A254876bi(n, k) = n! / prod(i=(n-((2*n)\(3^k))), (n-(n\(3^k))), i);
    
  • Scheme
    (define (A254876 n) (A254876bi (A002024 n) (A002260 n)))
    (define (A254876bi n k) (/ (A000142 n) (mul A000027 (- n (floor->exact (/ (* 2 n) (expt 3 k)))) (- n (floor->exact (/ n (expt 3 k)))))))
    (define (mul intfun lowlim uplim) (let multloop ((i lowlim) (res 1)) (cond ((> i uplim) res) (else (multloop (+ 1 i) (* res (intfun i)))))))

Formula

T(n,k) = n! / Product_{m=(n-floor((2n)/(3^k))) .. (n-floor((n)/(3^k)))} m.

A254865 a(n) = Product_{k = 1+n-floor(n/3) .. n} k.

Original entry on oeis.org

1, 1, 3, 4, 5, 30, 42, 56, 504, 720, 990, 11880, 17160, 24024, 360360, 524160, 742560, 13366080, 19535040, 27907200, 586051200, 859541760, 1235591280, 29654190720, 43609104000, 62990928000, 1700755056000, 2506375872000, 3634245014400, 109027350432000, 160945136352000, 234102016512000, 7725366544896000, 11420107066368000
Offset: 1

Views

Author

Antti Karttunen, Feb 09 2015

Keywords

Comments

Informally: Take the upper third of natural numbers in range [1..n] and multiply them together.

Crossrefs

Leftmost column of A254864.
Trisection: A064352.

Programs

  • Maple
    seq(n!/(n-floor(n/3))!,n=1..50); # Robert Israel, Jul 15 2020
  • Mathematica
    Array[#!/(# - Floor[#/3])! &, 34] (* Michael De Vlieger, Jul 15 2020 *)
  • PARI
    a(n) = prod(k=1+n-n\3, n, k); \\ Michel Marcus, Jul 15 2020
  • Scheme
    (define (A254865 n) (mul A000027 (+ 1 (- n (floor->exact (/ n 3)))) n))
    (define (mul intfun lowlim uplim) (let multloop ((i lowlim) (res 1)) (cond ((> i uplim) res) (else (multloop (+ 1 i) (* res (intfun i)))))))
    (define (A254865 n) (A254864bi n 1)) ;; Alternatively, using code given in A254864.
    

Formula

a(n) = Product_{k = 1+n-floor(n/3) .. n} k.
Other identities. For all n >= 1:
a(3n) = A064352(n).
From Robert Israel, Jul 15 2020: (Start) a(n) = n!/(n-floor(n/3))!.
a(3*k) = 3*k*a(3*k-1).
a(3*k+1) = (3*k+1)*a(3*k)/(2*k+1).
a(3*k+2) = (3*k+2)*a(3*k+1)/(2*k+2).
E.g.f.: (cosh(x^(3/2))-1)*(1+1/x) + sinh(x^(3/2))/sqrt(x).
(End)
Showing 1-3 of 3 results.