cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A254875 a(n) = floor((10*n^3 + 57*n^2 + 102*n + 72) / 72).

Original entry on oeis.org

1, 3, 8, 16, 28, 45, 68, 97, 134, 179, 233, 297, 372, 458, 557, 669, 795, 936, 1093, 1266, 1457, 1666, 1894, 2142, 2411, 2701, 3014, 3350, 3710, 4095, 4506, 4943, 5408, 5901, 6423, 6975, 7558, 8172, 8819, 9499, 10213, 10962, 11747, 12568, 13427, 14324, 15260
Offset: 0

Views

Author

Michael Somos, Feb 09 2015

Keywords

Examples

			G.f. = 1 + 3*x + 8*x^2 + 16*x^3 + 28*x^4 + 45*x^5 + 68*x^6 + 97*x^7 + ...
		

Crossrefs

Cf. A254874.

Programs

  • Magma
    [Floor((10*n^3 +57*n^2 +102*n +72)/72): n in [0..30]]; // G. C. Greubel, Aug 03 2018
  • Mathematica
    a[ n_] := Quotient[ 10 n^3 + 57 n^2 + 102 n + 72, 72];
    Table[Floor[(10n^3+57n^2+102n+72)/72],{n,0,60}] (* or *) LinearRecurrence[ {2,0,-1,-1,0,2,-1},{1,3,8,16,28,45,68},60] (* Harvey P. Dale, Jan 07 2017 *)
  • PARI
    {a(n) = (10*n^3 + 57*n^2 + 102*n + 72) \ 72};
    
  • PARI
    {a(n) = polcoeff( (-1)^(n<0) * (if( n<0, n = -4 - n; x, x^2) + 1 + x + x^2 + x^3) / ((1 - x)^2 * (1 - x^2) * (1 - x^ 3)) + x * O(x^n), n)};
    

Formula

G.f.: (1 + x + 2*x^2 + x^3) / ((1 - x)^2 * (1 - x^2) * (1 - x^3)).
a(n) - 2*a(n+1) + 2*a(n+3) - a(n+4) = -1 if n == 0 (mod 3) else -2 for all n in Z.
a(n) = -A254874(-4-n) for all n in Z.

A254877 Expansion of (1 - x^5) / ((1 - x) * (1 - x^2)^2 * (1 - x^3) * (1 - x^4)) in powers of x.

Original entry on oeis.org

1, 1, 3, 4, 8, 9, 16, 18, 28, 31, 45, 49, 68, 73, 97, 104, 134, 142, 179, 189, 233, 245, 297, 311, 372, 388, 458, 477, 557, 578, 669, 693, 795, 822, 936, 966, 1093, 1126, 1266, 1303, 1457, 1497, 1666, 1710, 1894, 1942, 2142, 2194, 2411, 2467, 2701, 2762, 3014
Offset: 0

Views

Author

Michael Somos, Feb 09 2015

Keywords

Comments

The number of quadruples of integers [x, u, v, w] which satisfy x > u > v > w >=0, n+5 = x+u, and either u+v <= x+w or x+u+v+w is even.

Examples

			G.f. = 1 + x + 3*x^2 + 4*x^3 + 8*x^4 + 9*x^5 + 16*x^6 + 18*x^7 + 28*x^8 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := Quotient[ 5 n^3 + If[ OddQ[n], 48 n^2 + 141 n + 162, 57 n^2 + 204 n + 288], 288];
    a[ n_] := Module[{m = n}, SeriesCoefficient[ If[ n < 0, m = -7 - n; -1, 1] (1 - x^5)/((1 - x) (1 - x^2)^2 (1 - x^3) (1 - x^4)), {x, 0, m}]];
    a[ n_] := Length @ FindInstance[ {x > u, u > v, v > w, w >= 0, x + u == n + 5, ((u + v <= x + w && x + u + v + w == 2 k + 1) || x + u + v + w == 2 k)}, {x, u, v, w, k}, Integers, 10^9];
  • PARI
    {a(n) = (5*n^3 + if( n%2, 48*n^2 + 141*n + 162, 57*n^2 + 204*n + 288 )) \ 288};
    
  • PARI
    {a(n) = my(s=(-1)^(n<0)); if( n<0, n = -7-n); s * polcoeff( (1 - x^5) / ((1 - x) * (1 - x^2)^2 * (1 - x^3) * (1 - x^4)) + x * O(x^n), n)};

Formula

Euler transform of length 5 sequence [ 1, 2, 1, 1, -1].
a(n) = -a(-7-n) for all n in Z.
a(2*n) = A254875(n), a(2*n + 1) = A254874(n).
Showing 1-2 of 2 results.