A254875 a(n) = floor((10*n^3 + 57*n^2 + 102*n + 72) / 72).
1, 3, 8, 16, 28, 45, 68, 97, 134, 179, 233, 297, 372, 458, 557, 669, 795, 936, 1093, 1266, 1457, 1666, 1894, 2142, 2411, 2701, 3014, 3350, 3710, 4095, 4506, 4943, 5408, 5901, 6423, 6975, 7558, 8172, 8819, 9499, 10213, 10962, 11747, 12568, 13427, 14324, 15260
Offset: 0
Examples
G.f. = 1 + 3*x + 8*x^2 + 16*x^3 + 28*x^4 + 45*x^5 + 68*x^6 + 97*x^7 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..2500
- Kyu-Hwan Lee, Se-jin Oh, Catalan triangle numbers and binomial coefficients, arXiv:1601.06685 [math.CO], 2016.
- Index entries for linear recurrences with constant coefficients, signature (2,0,-1,-1,0,2,-1).
Crossrefs
Cf. A254874.
Programs
-
Magma
[Floor((10*n^3 +57*n^2 +102*n +72)/72): n in [0..30]]; // G. C. Greubel, Aug 03 2018
-
Mathematica
a[ n_] := Quotient[ 10 n^3 + 57 n^2 + 102 n + 72, 72]; Table[Floor[(10n^3+57n^2+102n+72)/72],{n,0,60}] (* or *) LinearRecurrence[ {2,0,-1,-1,0,2,-1},{1,3,8,16,28,45,68},60] (* Harvey P. Dale, Jan 07 2017 *)
-
PARI
{a(n) = (10*n^3 + 57*n^2 + 102*n + 72) \ 72};
-
PARI
{a(n) = polcoeff( (-1)^(n<0) * (if( n<0, n = -4 - n; x, x^2) + 1 + x + x^2 + x^3) / ((1 - x)^2 * (1 - x^2) * (1 - x^ 3)) + x * O(x^n), n)};
Formula
G.f.: (1 + x + 2*x^2 + x^3) / ((1 - x)^2 * (1 - x^2) * (1 - x^3)).
a(n) - 2*a(n+1) + 2*a(n+3) - a(n+4) = -1 if n == 0 (mod 3) else -2 for all n in Z.
a(n) = -A254874(-4-n) for all n in Z.
Comments