Original entry on oeis.org
7, 26, 124, 342, 1330, 2196, 12166, 24388, 29790, 79506, 103822, 148876, 205378, 226980, 300762, 357910, 493038, 571786, 1030300, 1092726, 1225042, 2248090, 2685618, 3307948, 3442950, 3869892, 4657462, 5177716, 5735338, 6967870, 7645372, 9393930, 11089566, 11697082
Offset: 1
7 is a term since A254926(7) = A254926(8) = 7.
-
f[p_, e_] := If[e < 3, p^e, p^e - p^(e - 3)]; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[10^6], s[#] == s[# + 1] &]
-
from math import prod
from itertools import count, islice
from sympy import factorint
def A349309_gen(startvalue=1): # generator of terms >= startvalue
a = prod(p**e - (p**(e-3) if e >= 3 else 0) for p, e in factorint(max(startvalue,1)).items())
for k in count(max(startvalue,1)):
b = prod(p**e - (p**(e-3) if e >= 3 else 0) for p, e in factorint(k+1).items())
if a == b:
yield k
a = b
A349309_list = list(islice(A349309_gen(),10)) # Chai Wah Wu, Jan 24 2022
A384049
The number of integers k from 1 to n such that the greatest divisor of k that is a unitary divisor of n is cubefree.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 7, 9, 10, 11, 12, 13, 14, 15, 15, 17, 18, 19, 20, 21, 22, 23, 21, 25, 26, 26, 28, 29, 30, 31, 31, 33, 34, 35, 36, 37, 38, 39, 35, 41, 42, 43, 44, 45, 46, 47, 45, 49, 50, 51, 52, 53, 52, 55, 49, 57, 58, 59, 60, 61, 62, 63, 63, 65, 66, 67, 68
Offset: 1
The number of integers k from 1 to n such that the greatest divisor of k that is a unitary divisor of n is:
A047994 (1),
A384048 (squarefree), this sequence (cubefree),
A384050 (powerful),
A384051 (cubefull),
A384052 (square),
A384053 (cube),
A384054 (exponentially odd),
A384055 (odd),
A384056 (power of 2),
A384057 (3-smooth),
A384058 (5-rough).
-
f[p_, e_] := p^e - If[e < 3, 0, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a,100]
-
a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^f[i,2] - if(f[i,2] < 3, 0, 1));}
A254981
a(n) is the sum of the divisors d of n such that n/d is cubefree.
Original entry on oeis.org
1, 3, 4, 7, 6, 12, 8, 14, 13, 18, 12, 28, 14, 24, 24, 28, 18, 39, 20, 42, 32, 36, 24, 56, 31, 42, 39, 56, 30, 72, 32, 56, 48, 54, 48, 91, 38, 60, 56, 84, 42, 96, 44, 84, 78, 72, 48, 112, 57, 93, 72, 98, 54, 117, 72, 112, 80, 90, 60, 168, 62, 96, 104, 112, 84, 144
Offset: 1
-
nn = 66; f[list_, i_] := list[[i]]; a = Table[If[Max[FactorInteger[n][[All, 2]]] < 3, 1, 0], {n, 1, nn}]; b =Table[n, {n, 1, nn}]; Table[
DirichletConvolve[f[a, n], f[b, n], n, m], {m, 1, nn}] (* Geoffrey Critzer, Feb 22 2015 *)
f[p_, e_] := p^(e-2) * (1 + p + p^2); f[p_, 1] := 1 + p; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 27 2023 *)
-
a212793(n) = {my(f = factor(n)); for (i=1, #f~, if ((f[i, 2]) >=3, return(0)); ); return (1); }
a(n) = sumdiv(n, d, d*a212793(n/d)); \\ Michel Marcus, Feb 11 2015
-
a(n) = sumdiv(n, d, if (ispower(d, 3), moebius(sqrtnint(d, 3))*sigma(n/d), 0)); \\ Michel Marcus, Mar 04 2015
A384655
a(n) = Sum_{k=1..n} A051903(gcd(n,k)).
Original entry on oeis.org
0, 1, 1, 3, 1, 4, 1, 7, 4, 6, 1, 11, 1, 8, 7, 15, 1, 14, 1, 17, 9, 12, 1, 25, 6, 14, 13, 23, 1, 22, 1, 31, 13, 18, 11, 36, 1, 20, 15, 39, 1, 30, 1, 35, 26, 24, 1, 53, 8, 32, 19, 41, 1, 44, 15, 53, 21, 30, 1, 59, 1, 32, 34, 63, 17, 46, 1, 53, 25, 46, 1, 81, 1, 38
Offset: 1
a(4) = A051903(gcd(4,1)) + A051903(gcd(4,2)) + A051903(gcd(4,3)) + A051903(gcd(4,4)) = A051903(1) + A051903(2) + A051903(1) + A051903(4) = 0 + 1 + 0 + 2 = 3.
Cf.
A000010,
A033150,
A005117,
A050873,
A051903,
A051953,
A063659,
A067259,
A254926,
A357310,
A383156,
A384656 (unitary analog).
-
e[n_] := If[n == 1, 0, Max[FactorInteger[n][[;;, 2]]]]; a[n_] := Sum[e[GCD[n, k]], {k, 1, n}]; Array[a, 100]
(* or *)
f[p_, e_, k_] := p^e - If[e < k, 0, p^(e - k)]; a[n_] := Module[{fct = FactorInteger[n], emax, s}, emax = Max[fct[[;; , 2]]]; s = emax * n; Do[s -= Times @@ (f[#1, #2, k] & @@@ fct), {k, 1, emax}]; s]; a[1] = 0; Array[a, 100]
-
e(n) = if(n == 1, 0, vecmax(factor(n)[,2]));
a(n) = sum(k = 1, n, e(gcd(n, k)));
-
a(n) = if(n == 1, 0, my(f = factor(n), p = f[,1], e = f[,2], emax = vecmax(e), s = emax*n); for(k = 1, emax, s -= prod(i = 1, #p, p[i]^e[i] - if(e[i] < k, 0, p[i]^(e[i]-k)))); s);
A384039
The number of integers k from 1 to n such that gcd(n,k) is a powerful number.
Original entry on oeis.org
1, 1, 2, 3, 4, 2, 6, 6, 7, 4, 10, 6, 12, 6, 8, 12, 16, 7, 18, 12, 12, 10, 22, 12, 21, 12, 21, 18, 28, 8, 30, 24, 20, 16, 24, 21, 36, 18, 24, 24, 40, 12, 42, 30, 28, 22, 46, 24, 43, 21, 32, 36, 52, 21, 40, 36, 36, 28, 58, 24, 60, 30, 42, 48, 48, 20, 66, 48, 44
Offset: 1
The number of integers k from 1 to n such that gcd(n,k) is:
A026741 (odd),
A062570 (power of 2),
A063659 (squarefree),
A078429 (cube),
A116512 (power of a prime),
A117494 (prime),
A126246 (1 or 2),
A206369 (square),
A254926 (cubefree),
A372671 (3-smooth), this sequence (powerful),
A384040 (cubefull),
A384041 (exponentially odd),
A384042 (5-rough).
-
f[p_, e_] := If[e == 1, p-1, (p^2-p+1)*p^(e-2)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
-
a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2] == 1, f[i,1]-1, (f[i,1]^2-f[i,1]+1)*f[i,1]^(f[i,2]-2)));}
A384040
The number of integers k from 1 to n such that gcd(n,k) is a cubefull number.
Original entry on oeis.org
1, 1, 2, 2, 4, 2, 6, 5, 6, 4, 10, 4, 12, 6, 8, 10, 16, 6, 18, 8, 12, 10, 22, 10, 20, 12, 19, 12, 28, 8, 30, 20, 20, 16, 24, 12, 36, 18, 24, 20, 40, 12, 42, 20, 24, 22, 46, 20, 42, 20, 32, 24, 52, 19, 40, 30, 36, 28, 58, 16, 60, 30, 36, 40, 48, 20, 66, 32, 44, 24
Offset: 1
The number of integers k from 1 to n such that gcd(n,k) is:
A026741 (odd),
A062570 (power of 2),
A063659 (squarefree),
A078429 (cube),
A116512 (power of a prime),
A117494 (prime),
A126246 (1 or 2),
A206369 (square),
A254926 (cubefree),
A372671 (3-smooth),
A384039 (powerful), this sequence (cubefull),
A384041 (exponentially odd),
A384042 (5-rough).
-
f[p_, e_] := Switch[e, 1, p-1, 2, p^2-p, , (p^3-p^2+1)*p^(e-3)]; a[1] = 1; a[n] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
-
a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2] == 1, f[i,1]-1, if(f[i,2] == 2, f[i,1]*(f[i,1]-1), (f[i,1]^3-f[i,1]^2+1)*f[i,1]^(f[i,2]-3))));}
A384041
The number of integers k from 1 to n such that gcd(n,k) is an exponentially odd number.
Original entry on oeis.org
1, 2, 3, 3, 5, 6, 7, 7, 8, 10, 11, 9, 13, 14, 15, 13, 17, 16, 19, 15, 21, 22, 23, 21, 24, 26, 25, 21, 29, 30, 31, 27, 33, 34, 35, 24, 37, 38, 39, 35, 41, 42, 43, 33, 40, 46, 47, 39, 48, 48, 51, 39, 53, 50, 55, 49, 57, 58, 59, 45, 61, 62, 56, 53, 65, 66, 67, 51
Offset: 1
The number of integers k from 1 to n such that gcd(n,k) is:
A026741 (odd),
A062570 (power of 2),
A063659 (squarefree),
A078429 (cube),
A116512 (power of a prime),
A117494 (prime),
A126246 (1 or 2),
A206369 (square),
A254926 (cubefree),
A372671 (3-smooth),
A384039 (powerful),
A384040 (cubefull), this sequence (exponentially odd),
A384042 (5-rough).
-
f[p_, e_] := ((p^2+p-1)*p^(e-1) - (-1)^e)/(p+1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
-
a(n) = {my(f = factor(n)); prod(i = 1, #f~, ((f[i,1]^2+f[i,1]-1)*f[i,1]^(f[i,2]-1) - (-1)^f[i,2])/(f[i,1] + 1));}
A384042
The number of integers k from 1 to n such that gcd(n,k) is a 5-rough number (A007310).
Original entry on oeis.org
1, 1, 2, 2, 5, 2, 7, 4, 6, 5, 11, 4, 13, 7, 10, 8, 17, 6, 19, 10, 14, 11, 23, 8, 25, 13, 18, 14, 29, 10, 31, 16, 22, 17, 35, 12, 37, 19, 26, 20, 41, 14, 43, 22, 30, 23, 47, 16, 49, 25, 34, 26, 53, 18, 55, 28, 38, 29, 59, 20, 61, 31, 42, 32, 65, 22, 67, 34, 46
Offset: 1
The number of integers k from 1 to n such that gcd(n,k) is:
A026741 (odd),
A062570 (power of 2),
A063659 (squarefree),
A078429 (cube),
A116512 (power of a prime),
A117494 (prime),
A126246 (1 or 2),
A206369 (square),
A254926 (cubefree),
A372671 (3-smooth),
A384039 (powerful),
A384040 (cubefull),
A384041 (exponentially odd), this sequence (5-rough).
-
f[p_, e_] := If[p < 5, (p-1)*p^(e-1), p^e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
-
a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,1] < 5, (f[i,1]-1)*f[i,1]^(f[i,2]-1), f[i,1]^f[i,2]));}
A309287
Square array T(v, m), read by antidiagonals, for the Rogel-Klee arithmetic function: number of positive integers h in the set [m] for which gcd(h, m) is v-th-power-free, i.e., gcd(h, m) is not divisible by any v-th power of an integer > 1 (with v, m >= 1).
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 2, 3, 2, 1, 4, 3, 3, 2, 1, 2, 5, 4, 3, 2, 1, 6, 6, 5, 4, 3, 2, 1, 4, 7, 6, 5, 4, 3, 2, 1, 6, 6, 7, 6, 5, 4, 3, 2, 1, 4, 8, 7, 7, 6, 5, 4, 3, 2, 1, 10, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 4, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 12, 9, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 6, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1
Offset: 1
Table for T(v, m) (with rows v >= 1 and columns m >= 1) begins as follows:
v=1: 1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, 12, 6, 8, 8, ...
v=2: 1, 2, 3, 3, 5, 6, 7, 6, 8, 10, 11, 9, 13, 14, 15, 12, ...
v=3: 1, 2, 3, 4, 5, 6, 7, 7, 9, 10, 11, 12, 13, 14, 15, 14, ...
v=4: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 15, ...
v=5: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, ...
v=6: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, ...
v=7: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, ...
...
Clearly, lim_{v -> infinity} T(v, m) = m.
- Paul J. McCarthy, Introduction to Arithmetical Functions, Springer-Verlag, 1986; see pp. 38-40 and 69.
- Eckford Cohen, A class of residue systems (mod r) and related arithmetical functions. I. A generalization of the Moebius function, Pacific J. Math. 9(1) (1959), 13-24; see Section 6 where T(v, m) = Phi_v(m).
- Eckford Cohen, A generalized Euler phi-function, Math. Mag. 41 (1968), 276-279; here T(v, m) = phi_v(m).
- E. K. Haviland, An analogue of Euler's phi-function, Duke Math. J. 11 (1944), 869-872; here T(v=2, m) = rho(m).
- V. L. Klee, Jr., A generalization of Euler's phi function, Amer. Math. Monthly, 55(6) (1948), 358-359; here T(v, m) = Phi_v(m).
- Paul J. McCarthy, On a certain family of arithmetic functions, Amer. Math. Monthly 65 (1958), 586-590; here, T(v, m) = T_v(m).
- Franz Rogel, Entwicklung einiger zahlentheoreticher Funktionen in unendliche Reihen, S.-B. Kgl. Bohmischen Ges. Wiss. Article XLVI/XLIV (1897), Prague (26 pages). [This paper deals with arithmetic functions, especially the Euler phi function. It was continued three years later with the next paper, which contains his function phi_k(n). As stated at the end of the volume, in the table of contents, there is a mistake in numbering the article, so two Roman numerals appear in the literature for labeling this article!]
- Franz Rogel, Entwicklung einiger zahlentheoreticher Funktionen in unendliche Reihen, S.-B. Kgl. Bohmischen Ges. Wiss. Article XXX (1900), Prague (9 pages). [This is a continuation of the previous article, which was written three years earlier and has the same title. The numbering of the equations continues from the previous paper, but this paper is the one that introduces the function phi_k(n). In our notation, T(v, m) = phi_v(m). Cohen (1959) refers to this paper and correctly attributes this function to F. Rogel.]
A000010 (row v = 1 is Euler's phi function),
A063659 (row v = 2 is Haviland's function),
A254926 (row v = 3).
-
/* Modification of Michel Marcus's program from sequence A254926: */
T(v, m) = {f = factor(m); for (i=1, #f~, if ((e=f[i, 2])>=v, f[i, 1] = f[i, 1]^e - f[i, 1]^(e-v); f[i, 2]=1); ); factorback(f); }
/* Print the first 40 terms of each of the first 10 rows: */
{ for (v=1, 10, for (m=1, 40, print1(T(v, m), ", "); ); print(); ); }
Showing 1-9 of 9 results.
Comments