A254963 a(n) = n*(11*n + 3)/2.
0, 7, 25, 54, 94, 145, 207, 280, 364, 459, 565, 682, 810, 949, 1099, 1260, 1432, 1615, 1809, 2014, 2230, 2457, 2695, 2944, 3204, 3475, 3757, 4050, 4354, 4669, 4995, 5332, 5680, 6039, 6409, 6790, 7182, 7585, 7999, 8424, 8860, 9307, 9765, 10234, 10714, 11205, 11707
Offset: 0
Links
- Bruno Berselli, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Magma
[n*(11*n+3)/2: n in [0..50]];
-
Mathematica
Table[n (11 n + 3)/2, {n, 0, 50}] LinearRecurrence[{3,-3,1},{0,7,25},50] (* Harvey P. Dale, Mar 25 2018 *)
-
Maxima
makelist(n*(11*n+3)/2, n, 0, 50);
-
PARI
vector(50, n, n--; n*(11*n+3)/2)
-
Sage
[n*(11*n+3)/2 for n in (0..50)]
Formula
G.f.: x*(7 + 4*x)/(1 - x)^3.
From Elmo R. Oliveira, Dec 15 2024: (Start)
E.g.f.: exp(x)*x*(14 + 11*x)/2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
Comments