A000566
Heptagonal numbers (or 7-gonal numbers): n*(5*n-3)/2.
Original entry on oeis.org
0, 1, 7, 18, 34, 55, 81, 112, 148, 189, 235, 286, 342, 403, 469, 540, 616, 697, 783, 874, 970, 1071, 1177, 1288, 1404, 1525, 1651, 1782, 1918, 2059, 2205, 2356, 2512, 2673, 2839, 3010, 3186, 3367, 3553, 3744, 3940, 4141, 4347, 4558, 4774, 4995, 5221, 5452, 5688
Offset: 0
G.f. = x + 7*x^2 + 18*x^3 + 34*x^4 + 55*x^5 + 81*x^6 + 112*x^7 + ... - _Michael Somos_, Jan 25 2019
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 189.
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 38.
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6.
- Leonard E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 2.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 123.
- Daniel Mondot, Table of n, a(n) for n = 0..10000 (first 1000 terms by T. D. Noe)
- S. Barbero, U. Cerruti, and N. Murru, Transforming Recurrent Sequences by Using the Binomial and Invert Operators, J. Int. Seq. 13 (2010) # 10.7.7., section 4.4.
- C. K. Cook and M. R. Bacon, Some polygonal number summation formulas, Fib. Q., 52 (2014), 336-343.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 341.
- Bir Kafle, Florian Luca, and Alain Togbé, Pentagonal and heptagonal repdigits, Annales Mathematicae et Informaticae, pp. 137-145.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Omar E. Pol, Illustration of initial terms of A000217, A000290, A000326, A000384, A000566, A000567.
- B. Srinivasa Rao, Heptagonal Numbers in the Pell Sequence and Diophantine Equations 2x^2 = y^2(5y - 3)^2 ± 2, Fib. Quarterly, 43 (2005), 194-201.
- B. Srinivasa Rao, Heptagonal numbers in the associated Pell sequence and Diophantine equations x^2(5x - 3)^2 = 8y^2 ± 4, Fib. Quarterly, 43 (2005), 302-306.
- Leo Tavares, Illustration.
- Eric Weisstein's World of Mathematics, Heptagonal Number.
- Index to sequences related to polygonal numbers.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
a(n)=
A093562(n+1, 2), (5, 1)-Pascal column.
-
a000566 n = n * (5 * (n - 1) + 2) `div` 2
a000566_list = scanl (+) 0 a016861_list -- Reinhard Zumkeller, Jun 16 2013
-
a000566:=func< n | n*(5*n-3) div 2 >; [ a000566(n): n in [0..50] ];
-
A000566 := proc(n)
n*(5*n-3)/2 ;
end proc:
seq(A000566(n),n=0..30); # R. J. Mathar, Oct 02 2020
-
Table[n (5n - 3)/2, {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 1, 7}, 50] (* Harvey P. Dale, Oct 13 2011 *)
Join[{0},Accumulate[Range[1,315,5]]] (* Harvey P. Dale, Mar 26 2016 *)
(* For Mathematica 10.4+ *) Table[PolygonalNumber[RegularPolygon[7], n], {n, 0, 48}] (* Arkadiusz Wesolowski, Aug 27 2016 *)
PolygonalNumber[7,Range[0,50]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 23 2021 *)
-
makelist(n*(5*n-3)/2, n, 0, 20); /* Martin Ettl, Dec 11 2012 */
-
a(n) = n * (5*n - 3) / 2
-
# Intended to compute the initial segment of the sequence, not isolated terms.
def aList():
x, y = 1, 1
yield 0
while True:
yield x
x, y = x + y + 5, y + 5
A000566 = aList()
print([next(A000566) for i in range(49)]) # Peter Luschny, Aug 04 2019
-
[n*(5*n-3)//2 for n in range(50)] # Gennady Eremin, Mar 24 2022
A016742
Even squares: a(n) = (2*n)^2.
Original entry on oeis.org
0, 4, 16, 36, 64, 100, 144, 196, 256, 324, 400, 484, 576, 676, 784, 900, 1024, 1156, 1296, 1444, 1600, 1764, 1936, 2116, 2304, 2500, 2704, 2916, 3136, 3364, 3600, 3844, 4096, 4356, 4624, 4900, 5184, 5476, 5776, 6084, 6400, 6724, 7056, 7396, 7744, 8100, 8464
Offset: 0
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd ed., 1994, p. 99.
- Seberry, Jennifer and Yamada, Mieko; Hadamard matrices, sequences and block designs, in Dinitz and Stinson, eds., Contemporary design theory, pp. 431-560, Wiley-Intersci. Ser. Discrete Math. Optim., Wiley, New York, 1992.
- W. D. Wallis, Anne Penfold Street and Jennifer Seberry Wallis, Combinatorics: Room squares, sum-free sets, Hadamard matrices, Lecture Notes in Mathematics, Vol. 292, Springer-Verlag, Berlin-New York, 1972. iv+508 pp.
- Vincenzo Librandi, Table of n, a(n) for n = 0..900
- R. P. Boas and N. J. A. Sloane, Correspondence, 1974.
- Leo Tavares, Illustration: X Squares
- Various, Electron Configuration (Discussion in Physics Forums).
- Eric Weisstein's World of Mathematics, Graph Cycle.
- Eric Weisstein's World of Mathematics, King Graph.
- Eric Weisstein's World of Mathematics, Molecular Topological Index.
- Wikipedia, Aufbau principle.
- Index entries for sequences related to Hadamard matrices
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Cf.
A000290,
A001105,
A001539,
A016754,
A016802,
A016814,
A016826,
A016838,
A007742,
A033991,
A245058.
-
List([0..100], n -> (2*n)^2); # Muniru A Asiru, Jan 28 2018
-
a016742 = (* 4) . (^ 2)
a016742_list = 0 : map (subtract 4) (zipWith (+) a016742_list [8, 16 ..])
-- Reinhard Zumkeller, Jun 28 2015, Apr 20 2015
-
[(2*n)^2: n in [0..50]]; // Vincenzo Librandi, Apr 26 2011
-
seq((2*n)^2, n=0..100); # Muniru A Asiru, Jan 28 2018
-
Table[(2n)^2, {n, 0, 46}] (* Alonso del Arte, Apr 26 2011 *)
-
makelist((2*n)^2,n,0,20); /* Martin Ettl, Jan 22 2013 */
-
a(n)=4*n^2 \\ Charles R Greathouse IV, Jul 28 2015
More terms from Sabir Abdus-Samee (sabdulsamee(AT)prepaidlegal.com), Mar 13 2006
A049450
Pentagonal numbers multiplied by 2: a(n) = n*(3*n-1).
Original entry on oeis.org
0, 2, 10, 24, 44, 70, 102, 140, 184, 234, 290, 352, 420, 494, 574, 660, 752, 850, 954, 1064, 1180, 1302, 1430, 1564, 1704, 1850, 2002, 2160, 2324, 2494, 2670, 2852, 3040, 3234, 3434, 3640, 3852, 4070, 4294, 4524, 4760, 5002, 5250, 5504, 5764
Offset: 0
Joe Keane (jgk(AT)jgk.org)
On a 4 X 4 chessboard pawns at the second row have (3+4+4+3) moves and pawns at the third row have (2+3+3+2) moves so a(3) = 24. - _Johannes W. Meijer_, Feb 04 2010
From _Adi Dani_, Jun 04 2011: (Start)
a(1)=2: the partitions of 6*1-1=5 into 3 parts are [1,1,3] and[1,2,2].
a(2)=10: the partitions of 6*2-1=11 into 3 parts are [1,1,9], [1,2,8], [1,3,7], [1,4,6], [1,5,5], [2,2,7], [2,3,6], [2,4,5], [3,3,5], and [3,4,4].
(End)
.
. o
. o o o
. o o o o o o
. o o o o o o o o o o
. o o o o o o o o o o o o o o o
. o o o o o o o o o o o o o o o o o o o
. o o o o o o o o o o o o o o o o o o o o o o
. o o o o o o o o o o o o o o o o o o o o o o o o
. o o o o o o o o o o o o o o o o o o o o o o o o o
. o o o o o o o o o o o o o o o o o o o o o o o o o
. 2 10 24 44 70
- _Philippe Deléham_, Mar 30 2013
-
List([0..50], n-> n*(3*n-1)); # G. C. Greubel, Aug 31 2019
-
[n*(3*n-1) : n in [0..50]]; // Wesley Ivan Hurt, Sep 24 2017
-
seq(n*(3*n-1),n=0..44); # Zerinvary Lajos, Jun 12 2007
-
Table[n(3n-1),{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{0,2,10},50] (* Harvey P. Dale, Jun 21 2014 *)
2*PolygonalNumber[5,Range[0,50]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 01 2018 *)
-
a(n)=n*(3*n-1) \\ Charles R Greathouse IV, Nov 20 2012
-
[n*(3*n-1) for n in (0..50)] # G. C. Greubel, Aug 31 2019
A147875
Second heptagonal numbers: a(n) = n*(5*n+3)/2.
Original entry on oeis.org
0, 4, 13, 27, 46, 70, 99, 133, 172, 216, 265, 319, 378, 442, 511, 585, 664, 748, 837, 931, 1030, 1134, 1243, 1357, 1476, 1600, 1729, 1863, 2002, 2146, 2295, 2449, 2608, 2772, 2941, 3115, 3294, 3478, 3667, 3861, 4060, 4264, 4473, 4687, 4906, 5130, 5359, 5593
Offset: 0
G.f. = 4*x + 13*x^2 + 27*x^3 + 46*x^4 + 70*x^5 + 99*x^6 + 133*x^7 + ... - _Michael Somos_, Jan 25 2019
-
List([0..50], n-> n*(5*n+3)/2); # G. C. Greubel, Jul 04 2019
-
[n*(5*n+3)/2: n in [0..50]]; // G. C. Greubel, Jul 04 2019
-
Table[(n(5n+3))/2, {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 4, 13}, 50] (* Harvey P. Dale, May 15 2013 *)
-
a(n)=n*(5*n+3)/2 \\ Charles R Greathouse IV, Sep 24 2015
-
[n*(5*n+3)/2 for n in (0..50)] # G. C. Greubel, Jul 04 2019
A049453
Second pentagonal numbers with even index: a(n) = n*(6*n+1).
Original entry on oeis.org
0, 7, 26, 57, 100, 155, 222, 301, 392, 495, 610, 737, 876, 1027, 1190, 1365, 1552, 1751, 1962, 2185, 2420, 2667, 2926, 3197, 3480, 3775, 4082, 4401, 4732, 5075, 5430, 5797, 6176, 6567, 6970, 7385, 7812, 8251, 8702, 9165, 9640, 10127, 10626, 11137, 11660, 12195
Offset: 0
Joe Keane (jgk(AT)jgk.org)
-
seq(binomial(6*n+1,2)/3, n=0..42); # Zerinvary Lajos, Jan 21 2007
-
s=0;lst={s};Do[s+=n++ +7;AppendTo[lst, s], {n, 0, 7!, 12}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 16 2008 *)
Table[n*(6*n + 1), {n,0,50}] (* G. C. Greubel, Jun 07 2017 *)
-
x='x+O('x^50); concat([0], Vec(x*(7+5*x)/(1-x)^3)) \\ G. C. Greubel, Jun 07 2017
A022264
a(n) = n*(7*n - 1)/2.
Original entry on oeis.org
0, 3, 13, 30, 54, 85, 123, 168, 220, 279, 345, 418, 498, 585, 679, 780, 888, 1003, 1125, 1254, 1390, 1533, 1683, 1840, 2004, 2175, 2353, 2538, 2730, 2929, 3135, 3348, 3568, 3795, 4029, 4270, 4518, 4773, 5035, 5304, 5580, 5863, 6153, 6450, 6754, 7065, 7383
Offset: 0
Cf. similar sequences listed in
A022288.
A022267
a(n) = n*(9*n + 1)/2.
Original entry on oeis.org
0, 5, 19, 42, 74, 115, 165, 224, 292, 369, 455, 550, 654, 767, 889, 1020, 1160, 1309, 1467, 1634, 1810, 1995, 2189, 2392, 2604, 2825, 3055, 3294, 3542, 3799, 4065, 4340, 4624, 4917, 5219, 5530, 5850, 6179
Offset: 0
Cf. numbers of the form n*(d*n+10-d)/2:
A008587,
A056000,
A028347,
A140090,
A014106,
A028895,
A045944,
A186029,
A007742,
A033429,
A022268,
A049452,
A186030,
A135703,
A152734,
A139273.
Cf. similar sequences listed in
A254963.
Cf. similar sequences listed in
A022289.
-
seq(binomial(9*n+1,2)/9, n=0..37); # Zerinvary Lajos, Jan 21 2007
-
Table[ n (9 n + 1)/2, {n, 0, 40}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 5, 19}, 40] (* Harvey P. Dale, Jul 01 2013 *)
-
vector(100,n,(n-1)*(9*n-8)/2) \\ Derek Orr, Feb 06 2015
A226492
a(n) = n*(11*n-5)/2.
Original entry on oeis.org
0, 3, 17, 42, 78, 125, 183, 252, 332, 423, 525, 638, 762, 897, 1043, 1200, 1368, 1547, 1737, 1938, 2150, 2373, 2607, 2852, 3108, 3375, 3653, 3942, 4242, 4553, 4875, 5208, 5552, 5907, 6273, 6650, 7038, 7437, 7847, 8268, 8700, 9143, 9597, 10062, 10538, 11025, 11523
Offset: 0
Cf. sequences in Comments lines.
-
[n*(11*n-5)/2: n in [0..50]];
-
I:=[0,3,17]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..46]]; // Vincenzo Librandi, Aug 18 2013
-
Table[n (11 n - 5)/2, {n, 0, 50}]
CoefficientList[Series[x (3 + 8 x) / (1 - x)^3, {x, 0, 45}], x] (* Vincenzo Librandi, Aug 18 2013 *)
LinearRecurrence[{3,-3,1},{0,3,17},50] (* Harvey P. Dale, Jan 14 2019 *)
-
a(n)=n*(11*n-5)/2 \\ Charles R Greathouse IV, Sep 24 2015
A033580
Four times second pentagonal numbers: a(n) = 2*n*(3*n+1).
Original entry on oeis.org
0, 8, 28, 60, 104, 160, 228, 308, 400, 504, 620, 748, 888, 1040, 1204, 1380, 1568, 1768, 1980, 2204, 2440, 2688, 2948, 3220, 3504, 3800, 4108, 4428, 4760, 5104, 5460, 5828, 6208, 6600, 7004, 7420, 7848, 8288, 8740, 9204, 9680, 10168, 10668, 11180, 11704, 12240
Offset: 0
- Ivan Panchenko, Table of n, a(n) for n = 0..1000
- M. K. Siddiqui, M. Naeem, N. A. Rahman, and M. Imran, Computing topological indices of certain networks, J. of Optoelectronics and Advanced Materials, 18, No. 9-10 (2016), pp. 884-892.
- Leo Tavares, Illustration: Crossed Stars
- Leo Tavares, Illustration: Four Quarter Star Crosses
- Leo Tavares, Illustration: Triangulated Star Crosses
- Leo Tavares, Illustration: Oblong Star Crosses
- Leo Tavares, Illustration: Crossed Diamond Stars
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
A069125
a(n) = (11*n^2 - 11*n + 2)/2.
Original entry on oeis.org
1, 12, 34, 67, 111, 166, 232, 309, 397, 496, 606, 727, 859, 1002, 1156, 1321, 1497, 1684, 1882, 2091, 2311, 2542, 2784, 3037, 3301, 3576, 3862, 4159, 4467, 4786, 5116, 5457, 5809, 6172, 6546, 6931, 7327, 7734, 8152, 8581, 9021, 9472, 9934, 10407, 10891, 11386, 11892
Offset: 1
a(5)=111 because 111 = (11*5^2 - 11*5 + 2)/2 = (275 - 55 + 2)/2 = 222/2.
-
FoldList[#1 + #2 &, 1, 11 Range@ 45] (* Robert G. Wilson v *)
Table[(11n^2-11n+2)/2,{n,60}] (* or *) LinearRecurrence[{3,-3,1},{1,12,34},60] (* Harvey P. Dale, Jun 25 2011 *)
-
a(n)=(11*n^2-11*n+2)/2 \\ Charles R Greathouse IV, Sep 24 2015
Showing 1-10 of 14 results.
Comments