A049451 Twice second pentagonal numbers.
0, 4, 14, 30, 52, 80, 114, 154, 200, 252, 310, 374, 444, 520, 602, 690, 784, 884, 990, 1102, 1220, 1344, 1474, 1610, 1752, 1900, 2054, 2214, 2380, 2552, 2730, 2914, 3104, 3300, 3502, 3710, 3924, 4144, 4370, 4602, 4840, 5084, 5334, 5590, 5852, 6120, 6394, 6674, 6960, 7252, 7550, 7854
Offset: 0
Examples
From _Dmitry Kamenetsky_, Dec 14 2008, with slight rewording by Raymond Martineau (mart0258(AT)yahoo.com), Dec 16 2008: (Start) For an N x N Minesweeper grid the highest sum of numbers is (N-1)(3*N-2). This is achieved by filling every second row with mines (shown as 'X'). For example, when N=5 the best grids are: . X X X X X 4 6 6 6 4 X X X X X 4 6 6 6 4 X X X X X . and . 2 3 3 3 2 X X X X X 4 6 6 6 4 X X X X X 2 3 3 3 2 . each giving a total of 52. (End)
References
- L. B. W. Jolley, Summation of Series, Dover Publications, 1961, p. 12.
Links
- Ivan Panchenko, Table of n, a(n) for n = 0..1000
- Raghavendra N. Bhat, Cristian Cobeli, and Alexandru Zaharescu, A lozenge triangulation of the plane with integers, arXiv:2403.10500 [math.NT], 2024.
- Kival Ngaokrajang, Illustration of 3 points circle center spiral.
- Leo Tavares, Illustration: Double Hexagonal Trapezoids.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
GAP
List([0..55], n-> n*(3*n+1)); # G. C. Greubel, Sep 01 2019
-
Haskell
a049451 n = n * (3 * n + 1) -- Reinhard Zumkeller, Jul 07 2012
-
Magma
[n*(3*n+1): n in [0..55]]; // G. C. Greubel, Sep 01 2019
-
Mathematica
Table[n(3n+1), {n,0,55}] (* or *) CoefficientList[Series[2x(2+x)/(1-x)^3, {x,0,55}], x] (* Michael De Vlieger, Apr 05 2017 *)
-
PARI
a(n)=n*(3*n+1) \\ Charles R Greathouse IV, Sep 24 2015
-
Python
[n*(3*n+1) for n in range(60)] # Gennady Eremin, Feb 27 2022
-
Sage
[n*(3*n+1) for n in (0..55)] # G. C. Greubel, Sep 01 2019
Formula
a(n) = n*(3*n+1).
G.f.: 2*x*(2+x)/(1-x)^3.
Sum_{i=1..n} a(i) = A045991(n+1). - Gary W. Adamson, Dec 20 2006
a(n) = 2*A005449(n). - Omar E. Pol, Dec 18 2008
a(n) = a(n-1) + 6*n -2, n > 0. - Vincenzo Librandi, Aug 06 2010
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) with a(0) = 0, a(1) = 4, a(2) = 14. - Philippe Deléham, Mar 26 2013
a(n) = A174709(6*n+3). - Philippe Deléham, Mar 26 2013
a(n) = (24/(n+2)!)*Sum_{j=0..n} (-1)^(n-j)*binomial(n,j)*j^(n+2). - Bruno Berselli, Jun 04 2013 - after the similar formula of Vladimir Kruchinin in A002411
a(n) = Sum_{i = 2..5} P(i,n), where P(i,m) = m*((i-2)*m-(i-4))/2. - Bruno Berselli, Jul 04 2018
E.g.f.: x*(4 + 3*x)*exp(x). - G. C. Greubel, Sep 01 2019
From Amiram Eldar, Feb 27 2022: (Start)
Sum_{n>=1} 1/a(n) = 3 - Pi/(2*sqrt(3)) - 3*log(3)/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/sqrt(3) + 2*log(2) - 3. (End)
Comments