A033581 a(n) = 6*n^2.
0, 6, 24, 54, 96, 150, 216, 294, 384, 486, 600, 726, 864, 1014, 1176, 1350, 1536, 1734, 1944, 2166, 2400, 2646, 2904, 3174, 3456, 3750, 4056, 4374, 4704, 5046, 5400, 5766, 6144, 6534, 6936, 7350, 7776, 8214, 8664, 9126, 9600, 10086, 10584, 11094, 11616
Offset: 0
Examples
From _Omar E. Pol_, Aug 21 2011: (Start) Illustration of initial terms as concentric hexagons: . . o o o o o o . o o . o o o o o o o o o o . o o o o o o . o o o o o o o o o o o o . o o o o o o o o o o o o . o o o o o o o o o o o o . o o o o o o . o o o o o o o o o o . o o . o o o o o o . . 6 24 54 . (End)
Links
- Nathaniel Johnston, Table of n, a(n) for n = 0..10000
- Bruno Berselli, An interpretation of initial terms.
- Ivan N. Ianakiev, Hexagon-like honeycomb built form regular congruent hexagons.
- Leo Tavares, Illustration: Diamond Star Rays
- Eric Weisstein's World of Mathematics, Platonic Solid.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Haskell
a033581 = (* 6) . (^ 2) -- Reinhard Zumkeller, Apr 27 2014
-
Maple
seq(6*n^2,n=0..44); # Nathaniel Johnston, Jun 26 2011
-
Mathematica
6 Range[44]^2 (* Michael De Vlieger, Apr 02 2017 *) LinearRecurrence[{3,-3,1},{0,6,24},50] (* Harvey P. Dale, Jul 03 2017 *)
-
PARI
vector(100,n,6*(n-1)^2) \\ Derek Orr, Mar 11 2015
Formula
a(n) = A000290(n)*6. - Omar E. Pol, Dec 11 2008
a(n) = 12*n + a(n-1) - 6, with a(0)=0. - Vincenzo Librandi, Aug 05 2010
G.f.: 6*x*(1+x)/(1-x)^3. - Colin Barker, Feb 14 2012
For n > 0: a(n) = A005897(n) - 2. - Reinhard Zumkeller, Apr 27 2014
a(n) = 3*floor(1/(1-cos(1/n))) = floor(1/(1-n*sin(1/n))) for n > 0. - Clark Kimberling, Oct 08 2014
a(n) = t(4*n) - 4*t(n), where t(i) = i*(i+k)/2 for any k. Special case (k=1): a(n) = A000217(4*n) - 4*A000217(n). - Bruno Berselli, Aug 31 2017
From Amiram Eldar, Feb 03 2021: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/36.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/72 (A086729).
Product_{n>=1} (1 + 1/a(n)) = sqrt(6)*sinh(Pi/sqrt(6))/Pi.
Product_{n>=1} (1 - 1/a(n)) = sqrt(6)*sin(Pi/sqrt(6))/Pi. (End)
E.g.f.: 6*exp(x)*x*(1 + x). - Stefano Spezia, Aug 19 2022
Extensions
More terms from Larry Reeves (larryr(AT)acm.org), Nov 08 2001
Comments