cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A229620 Incorrect version of A045949.

Original entry on oeis.org

0, 6, 38, 116, 256, 478, 798, 1236, 1808, 2534, 3430, 4516, 5808, 7326, 9086, 11108, 13408, 16006, 18918, 22164, 25760, 29726, 34078, 38836, 44016, 49638, 55718, 62276, 69328, 76894, 84990, 93636, 102848, 112646, 123046, 134068, 145728, 158046, 171038, 184724, 199120, 214246, 230118, 246756, 264176, 282398, 301438, 321316, 342048, 363654
Offset: 0

Views

Author

Max Alekseyev, Sep 26 2013

Keywords

Comments

Arises from the formula in Problem 11 of Zhuravlev and Samovol (2012) paper, which incorrectly claims it to produce sequence A045949. Terms a(n) for n<=3 match those of A045949 but afterwards the two sequences diverge. Nevertheless these sequences satisfy the same linear recurrent relation.

Crossrefs

Cf. A045949.

Programs

  • PARI
    { a(n) = if(n%2, (n+1)*(6*n^2+3*n+1)/2- 4*n, n*(6*n^2+9*n-4)/2 ) }

Formula

For even n, a(n) = n*(6*n^2+9*n-4)/2; for odd n, a(n) = (n+1)*(6*n^2+3*n+1)/2 - 4*n.
For n>=4, a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-2) + 3*a(n-3) - a(n-4).
a(n) = (1-(-1)^n-8*n+18*n^2+12*n^3)/4. G.f.: -2*x*(2*x+1)*(x^2-4*x-3) / ((x-1)^4*(x+1)). - Colin Barker, Sep 29 2013
E.g.f.: (x*(11 + 27*x + 6*x^2)*cosh(x) + (1 + 11*x + 27*x^2 + 6*x^3)*sinh(x))/2. - Stefano Spezia, Mar 20 2022

A033581 a(n) = 6*n^2.

Original entry on oeis.org

0, 6, 24, 54, 96, 150, 216, 294, 384, 486, 600, 726, 864, 1014, 1176, 1350, 1536, 1734, 1944, 2166, 2400, 2646, 2904, 3174, 3456, 3750, 4056, 4374, 4704, 5046, 5400, 5766, 6144, 6534, 6936, 7350, 7776, 8214, 8664, 9126, 9600, 10086, 10584, 11094, 11616
Offset: 0

Views

Author

Keywords

Comments

Number of edges of a complete 4-partite graph of order 4n, K_n,n,n,n. - Roberto E. Martinez II, Oct 18 2001
Number of edges of the complete bipartite graph of order 7n, K_n, 6n. - Roberto E. Martinez II, Jan 07 2002
Number of edges in the line graph of the product of two cycle graphs, each of order n, L(C_n x C_n). - Roberto E. Martinez II, Jan 07 2002
Total surface area of a cube of edge length n. See A000578 for cube volume. See A070169 and A071399 for surface area and volume of a regular tetrahedron and links for the other Platonic solids. - Rick L. Shepherd, Apr 24 2002
a(n) can represented as n concentric hexagons (see example). - Omar E. Pol, Aug 21 2011
Sequence found by reading the line from 0, in the direction 0, 6, ..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. Opposite numbers to the members of A003154 in the same spiral. - Omar E. Pol, Sep 08 2011
Together with 1, numbers m such that floor(2*m/3) and floor(3*m/2) are both squares. Example: floor(2*150/3) = 100 and floor(3*150/2) = 225 are both squares, so 150 is in the sequence. - Bruno Berselli, Sep 15 2014
a(n+1) gives the number of vertices in a hexagon-like honeycomb built from A003215(n) congruent regular hexagons (see link). Example: a hexagon-like honeycomb consisting of 7 congruent regular hexagons has 1 core hexagon inside a perimeter of six hexagons. The perimeter has 18 vertices. The core hexagon has 6 vertices. a(2) = 18 + 6 = 24 is the total number of vertices. - Ivan N. Ianakiev, Mar 11 2015
a(n) is the area of the Pythagorean triangle whose sides are (3n, 4n, 5n). - Sergey Pavlov, Mar 31 2017
More generally, if k >= 5 we have that the sequence whose formula is a(n) = (2*k - 4)*n^2 is also the sequence found by reading the line from 0, in the direction 0, (2*k - 4), ..., in the square spiral whose vertices are the generalized k-gonal numbers. In this case k = 5. - Omar E. Pol, May 13 2018
The sequence also gives the number of size=1 triangles within a match-made hexagon of size n. - John King, Mar 31 2019
For hexagons, the number of matches required is A045945; thus number of size=1 triangles is A033581; number of larger triangles is A307253 and total number of triangles is A045949. See A045943 for analogs for Triangles; see A045946 for analogs for Stars. - John King, Apr 04 2019

Examples

			From _Omar E. Pol_, Aug 21 2011: (Start)
Illustration of initial terms as concentric hexagons:
.
.                                 o o o o o o
.                                o           o
.              o o o o          o   o o o o   o
.             o       o        o   o       o   o
.   o o      o   o o   o      o   o   o o   o   o
.  o   o    o   o   o   o    o   o   o   o   o   o
.   o o      o   o o   o      o   o   o o   o   o
.             o       o        o   o       o   o
.              o o o o          o   o o o o   o
.                                o           o
.                                 o o o o o o
.
.    6            24                   54
.
(End)
		

Crossrefs

Bisection of A032528. Central column of triangle A001283.
Cf. A017593 (first differences).

Programs

Formula

a(n) = A000290(n)*6. - Omar E. Pol, Dec 11 2008
a(n) = A001105(n)*3 = A033428(n)*2. - Omar E. Pol, Dec 13 2008
a(n) = 12*n + a(n-1) - 6, with a(0)=0. - Vincenzo Librandi, Aug 05 2010
G.f.: 6*x*(1+x)/(1-x)^3. - Colin Barker, Feb 14 2012
For n > 0: a(n) = A005897(n) - 2. - Reinhard Zumkeller, Apr 27 2014
a(n) = 3*floor(1/(1-cos(1/n))) = floor(1/(1-n*sin(1/n))) for n > 0. - Clark Kimberling, Oct 08 2014
a(n) = t(4*n) - 4*t(n), where t(i) = i*(i+k)/2 for any k. Special case (k=1): a(n) = A000217(4*n) - 4*A000217(n). - Bruno Berselli, Aug 31 2017
From Amiram Eldar, Feb 03 2021: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/36.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/72 (A086729).
Product_{n>=1} (1 + 1/a(n)) = sqrt(6)*sinh(Pi/sqrt(6))/Pi.
Product_{n>=1} (1 - 1/a(n)) = sqrt(6)*sin(Pi/sqrt(6))/Pi. (End)
E.g.f.: 6*exp(x)*x*(1 + x). - Stefano Spezia, Aug 19 2022

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Nov 08 2001

A045945 Hexagonal matchstick numbers: a(n) = 3*n*(3*n+1).

Original entry on oeis.org

0, 12, 42, 90, 156, 240, 342, 462, 600, 756, 930, 1122, 1332, 1560, 1806, 2070, 2352, 2652, 2970, 3306, 3660, 4032, 4422, 4830, 5256, 5700, 6162, 6642, 7140, 7656, 8190, 8742, 9312, 9900, 10506, 11130, 11772, 12432, 13110, 13806, 14520, 15252, 16002, 16770, 17556
Offset: 0

Views

Author

Keywords

Comments

This may also be construed as the number of line segments illustrating the isometric projection of a cube of side length n. Moreover, a(n) equals the number of rods making a cube of side length n+1 minus the number of rods making a cube of side length n. See the illustration in the links and formula below.

Crossrefs

The hexagon matchstick sequences are: Number of matchsticks: this sequence; size=1 triangles: A033581; larger triangles: A307253; total triangles: A045949. Analog for triangles: A045943; analog for stars: A045946. - John King, Apr 05 2019

Programs

Formula

a(n) = a(n-1) + 6*(3*n-1) (with a(0)=0). - Vincenzo Librandi, Nov 18 2010
G.f.: 6*x*(2+x)/(1-x)^3. - Colin Barker, Feb 12 2012
a(n) = 6*A005449(n). - R. J. Mathar, Feb 13 2016
a(n) = A059986(n) - A059986(n-1). - Peter M. Chema, Feb 26 2017
a(n) = 6*(A000217(n) + A000290(n)). - Peter M. Chema, Mar 26 2017
From Amiram Eldar, Jan 14 2021: (Start)
Sum_{n>=1} 1/a(n) = 1 - Pi/(6*sqrt(3)) - log(3)/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = -1 + Pi/(3*sqrt(3)) + 2*log(2)/3. (End)
From Elmo R. Oliveira, Dec 12 2024: (Start)
E.g.f.: 3*exp(x)*x*(4 + 3*x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3. (End)

A008893 Number of equilateral triangles formed by triples of points taken from a hexagonal chunk of side n in the hexagonal lattice.

Original entry on oeis.org

0, 8, 66, 258, 710, 1590, 3108, 5516, 9108, 14220, 21230, 30558, 42666, 58058, 77280, 100920, 129608, 164016, 204858, 252890, 308910, 373758, 448316, 533508, 630300, 739700, 862758, 1000566, 1154258, 1325010, 1514040, 1722608, 1952016, 2203608, 2478770
Offset: 0

Views

Author

Keywords

Comments

The hexagonal lattice is the familiar 2-dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice. Here we consider a hexagonal chunk of the lattice in which each bounding edge contains n+1 points.

Crossrefs

Programs

  • Mathematica
    A008893[n_] := n*(n + 1)*(7*n*(n + 1) + 2)/4; Array[A008893, 50, 0] (* or *)
    LinearRecurrence[{5, -10, 10, -5, 1}, {0, 8, 66, 258, 710}, 50] (* Paolo Xausa, Aug 16 2025 *)
  • Maxima
    A008893(n):=n*(n+1)*(7*n^2+7*n+2)/4$
    makelist(A008893(n),n,0,30); /* Martin Ettl, Nov 03 2012 */

Formula

a(n) = n*(n+1)*(7*n^2+7*n+2)/4.
G.f.: -2*x*(4*x^2+13*x+4)/(x-1)^5 [From Maksym Voznyy (voznyy(AT)mail.ru), Aug 10 2009]
From Elmo R. Oliveira, Aug 15 2025: (Start)
E.g.f.: exp(x)*x*(2 + x)*(16 + 42*x + 7*x^2)/4.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
a(n) = 2*A152041(n). (End)

Extensions

Edited May 29 2012 by N. J. A. Sloane, May 29 2012

A307253 Number of triangles larger than size=1 in a matchstick-made hexagon with side length n.

Original entry on oeis.org

0, 0, 14, 62, 166, 346, 624, 1020, 1556, 2252, 3130, 4210, 5514, 7062, 8876, 10976, 13384, 16120, 19206, 22662, 26510, 30770, 35464, 40612, 46236, 52356, 58994, 66170, 73906, 82222, 91140, 100680, 110864, 121712, 133246, 145486, 158454, 172170, 186656, 201932
Offset: 0

Views

Author

John King, Mar 31 2019

Keywords

Crossrefs

Cf. A033581 (number of size=1 triangles), A045949 (total number of triangles).
The hexagon matchstick sequences are as follows: number of matchsticks: A045945; for T1 triangles: A033581; for larger triangles: this sequence and for total triangles: A045949. There are analogs for triangles (see A045943) and stars (see A045946).

Programs

  • Mathematica
    LinearRecurrence[{3,-2,-2,3,-1},{0, 0, 14, 62, 166},166] (* Metin Sariyar, Oct 27 2019 *)
  • PARI
    concat([0,0], Vec(2*x^2*(7 + 10*x + 4*x^2) / ((1 - x)^4*(1 + x)) + O(x^40))) \\ Colin Barker, Apr 02 2019

Formula

a(n) = floor(n*(14*n^2+9*n+2)/4)-6*n^2.
G.f.: 2*x^2*(4*x^2+10*x+7)/((x+1)*(x-1)^4).
a(n) = A045949(n) - A033581(n).
a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5) for n>4. - Colin Barker, Apr 02 2019

A299965 Number of triangles in a Star of David of size n.

Original entry on oeis.org

0, 20, 118, 354, 788, 1480, 2490, 3878, 5704, 8028, 10910, 14410, 18588, 23504, 29218, 35790, 43280, 51748, 61254, 71858, 83620, 96600, 110858, 126454, 143448, 161900, 181870, 203418, 226604, 251488, 278130, 306590, 336928, 369204, 403478, 439810, 478260, 518888
Offset: 0

Views

Author

John King, Feb 22 2018

Keywords

Comments

In a Star of David of size n, there are A135453(n) "size=1" triangles.
The number of matchstick units is A045946.

Examples

			For n=1, there are 12 (size=1) + 6 (size=4) + 2 (size=9) = 20 triangles.
		

Crossrefs

For the total number of triangles in a different arrangement, see A002717 (for triangular matchstick), A045949 (for hexagonal matchstick).

Programs

  • Mathematica
    A299965[n_] := n*(n*(10*n + 9) + 1); Array[A299965, 50, 0] (* or *)
    LinearRecurrence[{4, -6, 4, -1}, {0, 20, 118, 354}, 50] (* Paolo Xausa, Sep 18 2024 *)
  • PARI
    concat(0, Vec(2*x*(10 + 19*x + x^2) / (1 - x)^4 + O(x^40))) \\ Colin Barker, Apr 04 2019

Formula

a(n) = n*(10*n^2+9*n+1) = 2*A045950(n).
From Colin Barker, Apr 04 2019: (Start)
G.f.: 2*x*(10 + 19*x + x^2) / (1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>3. (End)
E.g.f.: exp(x)*x*(20 + 39*x + 10*x^2). - Stefano Spezia, Sep 20 2024

Extensions

Corrected by John King, Stefano Spezia, and Paolo Xausa, Sep 20 2024
Showing 1-6 of 6 results.