A229620 Incorrect version of A045949.
0, 6, 38, 116, 256, 478, 798, 1236, 1808, 2534, 3430, 4516, 5808, 7326, 9086, 11108, 13408, 16006, 18918, 22164, 25760, 29726, 34078, 38836, 44016, 49638, 55718, 62276, 69328, 76894, 84990, 93636, 102848, 112646, 123046, 134068, 145728, 158046, 171038, 184724, 199120, 214246, 230118, 246756, 264176, 282398, 301438, 321316, 342048, 363654
Offset: 0
Links
- V. Zhuravlev and P. Samovol, Mathematical enigmas of king Solomon's stamp, Kvant 1 (2012), 40-43. (in Russian)
- Index entries for linear recurrences with constant coefficients, signature (3,-2,-2,3,-1).
Crossrefs
Cf. A045949.
Programs
-
PARI
{ a(n) = if(n%2, (n+1)*(6*n^2+3*n+1)/2- 4*n, n*(6*n^2+9*n-4)/2 ) }
Formula
For even n, a(n) = n*(6*n^2+9*n-4)/2; for odd n, a(n) = (n+1)*(6*n^2+3*n+1)/2 - 4*n.
For n>=4, a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-2) + 3*a(n-3) - a(n-4).
a(n) = (1-(-1)^n-8*n+18*n^2+12*n^3)/4. G.f.: -2*x*(2*x+1)*(x^2-4*x-3) / ((x-1)^4*(x+1)). - Colin Barker, Sep 29 2013
E.g.f.: (x*(11 + 27*x + 6*x^2)*cosh(x) + (1 + 11*x + 27*x^2 + 6*x^3)*sinh(x))/2. - Stefano Spezia, Mar 20 2022
Comments