A045945 Hexagonal matchstick numbers: a(n) = 3*n*(3*n+1).
0, 12, 42, 90, 156, 240, 342, 462, 600, 756, 930, 1122, 1332, 1560, 1806, 2070, 2352, 2652, 2970, 3306, 3660, 4032, 4422, 4830, 5256, 5700, 6162, 6642, 7140, 7656, 8190, 8742, 9312, 9900, 10506, 11130, 11772, 12432, 13110, 13806, 14520, 15252, 16002, 16770, 17556
Offset: 0
Links
- Ivan Panchenko, Table of n, a(n) for n = 0..1000
- Peter M. Chema, Illustration of initial terms as the first difference of number of rods required to make a 3-D cube.
- Craig Knecht, Number of positions a frame shifted H1 hexagon can occupy in a hexagon of order n.
- Amelia Carolina Sparavigna, The groupoids of Mersenne, Fermat, Cullen, Woodall and other Numbers and their representations by means of integer sequences, Politecnico di Torino, Italy (2019), [math.NT].
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Maple
a:= n-> 3*n*(3*n+1): seq(a(n), n=0..42); # Zerinvary Lajos, May 03 2007
-
Mathematica
f[n_]:=3*n*(3*n+1);f[Range[0,60]] (* Vladimir Joseph Stephan Orlovsky, Feb 05 2011 *)
-
PARI
a(n) = 3*n*(3*n+1) \\ Charles R Greathouse IV, Feb 27 2017
-
Python
def a(n): return 3*n*(3*n+1) # Indranil Ghosh, Mar 26 2017
Formula
a(n) = a(n-1) + 6*(3*n-1) (with a(0)=0). - Vincenzo Librandi, Nov 18 2010
G.f.: 6*x*(2+x)/(1-x)^3. - Colin Barker, Feb 12 2012
a(n) = 6*A005449(n). - R. J. Mathar, Feb 13 2016
From Amiram Eldar, Jan 14 2021: (Start)
Sum_{n>=1} 1/a(n) = 1 - Pi/(6*sqrt(3)) - log(3)/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = -1 + Pi/(3*sqrt(3)) + 2*log(2)/3. (End)
From Elmo R. Oliveira, Dec 12 2024: (Start)
E.g.f.: 3*exp(x)*x*(4 + 3*x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3. (End)
Comments