A011379 a(n) = n^2*(n+1).
0, 2, 12, 36, 80, 150, 252, 392, 576, 810, 1100, 1452, 1872, 2366, 2940, 3600, 4352, 5202, 6156, 7220, 8400, 9702, 11132, 12696, 14400, 16250, 18252, 20412, 22736, 25230, 27900, 30752, 33792, 37026, 40460, 44100, 47952, 52022, 56316, 60840
Offset: 0
Examples
a(3) = 3^2+3^3 = 36.
References
- L. B. W. Jolley, "Summation of Series", Dover Publications, 1961, pp. 50, 64.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Bruno Berselli, A description of the recursive method in Comments lines: website Matem@ticamente (in Italian).
- Allan Bickle and Zhongyuan Che, Irregularities of Maximal k-degenerate Graphs, Discrete Applied Math. 331 (2023) 70-87.
- Allan Bickle, A Survey of Maximal k-degenerate Graphs and k-Trees, Theory and Applications of Graphs 0 1 (2024) Article 5.
- Ivan Gutman and Kinkar Ch. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50, 2004, 83-92.
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets
- J.S. Seneschal, Oblong cuboid illustration
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
GAP
List([0..40], n-> n^2*(n+1) ); # G. C. Greubel, Aug 10 2019
-
Haskell
a011379 n = a000290 n + a000578 n -- Reinhard Zumkeller, Apr 28 2013
-
Magma
[n^2+n^3: n in [0..40]]; // Vincenzo Librandi, May 02 2011
-
Maple
A011379:=n->n^2*(n+1); seq(A011379(n), n=0..40); # Wesley Ivan Hurt, Feb 25 2014
-
Mathematica
Table[n^3+n^2, {n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Jan 03 2009, modified by G. C. Greubel, Aug 10 2019 *) LinearRecurrence[{4,-6,4,-1},{0,2,12,36},40] (* Harvey P. Dale, Sep 13 2018 *)
-
PARI
a(n)=n^3+n^2 \\ Charles R Greathouse IV, Apr 06 2016
-
Sage
[n^2*(n+1) for n in (0..40)] # G. C. Greubel, Aug 10 2019
Formula
a(n) = 2*A002411(n).
a(n) = Sum_{j=1..n} (Sum_{i=1..n} (i+j)), row sums of A126890 skipping numbers in the first column. - Alexander Adamchuk, Oct 12 2004
Sum_{n>0} 1/a(n) = (Pi^2 - 6)/6 = 0.6449340... [Jolley eq 272] - Gary W. Adamson, Dec 22 2006
a(n) = 2*n*binomial(n+1,2) = 2*n*A000217(n). - Arkadiusz Wesolowski, Feb 10 2012
G.f.: 2*x*(1 + 2*x)/(1 - x)^4. - Arkadiusz Wesolowski, Feb 11 2012
a(n) = A245334(n+1,2), n > 0. - Reinhard Zumkeller, Aug 31 2014
Sum_{n>=1} (-1)^(n+1)/a(n) = 1 + Pi^2/12 - 2*log(2). - Amiram Eldar, Jul 04 2020
E.g.f.: exp(x)*x*(2 + 4*x + x^2). - Stefano Spezia, May 20 2021
Comments