A011379
a(n) = n^2*(n+1).
Original entry on oeis.org
0, 2, 12, 36, 80, 150, 252, 392, 576, 810, 1100, 1452, 1872, 2366, 2940, 3600, 4352, 5202, 6156, 7220, 8400, 9702, 11132, 12696, 14400, 16250, 18252, 20412, 22736, 25230, 27900, 30752, 33792, 37026, 40460, 44100, 47952, 52022, 56316, 60840
Offset: 0
- L. B. W. Jolley, "Summation of Series", Dover Publications, 1961, pp. 50, 64.
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Bruno Berselli, A description of the recursive method in Comments lines: website Matem@ticamente (in Italian).
- Allan Bickle and Zhongyuan Che, Irregularities of Maximal k-degenerate Graphs, Discrete Applied Math. 331 (2023) 70-87.
- Allan Bickle, A Survey of Maximal k-degenerate Graphs and k-Trees, Theory and Applications of Graphs 0 1 (2024) Article 5.
- Ivan Gutman and Kinkar Ch. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50, 2004, 83-92.
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets
- J.S. Seneschal, Oblong cuboid illustration
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Cf.
A000217,
A000290,
A000292,
A000330,
A000578,
A002378,
A002411,
A002412,
A002413,
A005449,
A013661,
A022549,
A027480,
A045991,
A049450,
A120070,
A126890,
A195437,
A245334.
-
List([0..40], n-> n^2*(n+1) ); # G. C. Greubel, Aug 10 2019
-
a011379 n = a000290 n + a000578 n -- Reinhard Zumkeller, Apr 28 2013
-
[n^2+n^3: n in [0..40]]; // Vincenzo Librandi, May 02 2011
-
A011379:=n->n^2*(n+1); seq(A011379(n), n=0..40); # Wesley Ivan Hurt, Feb 25 2014
-
Table[n^3+n^2, {n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Jan 03 2009, modified by G. C. Greubel, Aug 10 2019 *)
LinearRecurrence[{4,-6,4,-1},{0,2,12,36},40] (* Harvey P. Dale, Sep 13 2018 *)
-
a(n)=n^3+n^2 \\ Charles R Greathouse IV, Apr 06 2016
-
[n^2*(n+1) for n in (0..40)] # G. C. Greubel, Aug 10 2019
A033579
Four times pentagonal numbers: a(n) = 2*n*(3*n-1).
Original entry on oeis.org
0, 4, 20, 48, 88, 140, 204, 280, 368, 468, 580, 704, 840, 988, 1148, 1320, 1504, 1700, 1908, 2128, 2360, 2604, 2860, 3128, 3408, 3700, 4004, 4320, 4648, 4988, 5340, 5704, 6080, 6468, 6868, 7280, 7704, 8140, 8588, 9048, 9520, 10004, 10500, 11008, 11528, 12060
Offset: 0
-
List([0..45], n-> 4*Binomial(3*n,2)/3 ); # G. C. Greubel, Oct 09 2019
-
[4*Binomial(3*n,2)/3: n in [0..45]]; // G. C. Greubel, Oct 09 2019
-
seq(4*binomial(3*n,2)/3, n=0..45); # G. C. Greubel, Oct 09 2019
-
4 PolygonalNumber[5, Range[0, 45]] (* Michael De Vlieger, Aug 02 2016, Version 10.4 *)
-
a(n)=2*n*(3*n-1) \\ Charles R Greathouse IV, Jun 28 2013
-
[4*binomial(3*n,2)/3 for n in (0..45)] # G. C. Greubel, Oct 09 2019
A035006
Number of possible rook moves on an n X n chessboard.
Original entry on oeis.org
0, 8, 36, 96, 200, 360, 588, 896, 1296, 1800, 2420, 3168, 4056, 5096, 6300, 7680, 9248, 11016, 12996, 15200, 17640, 20328, 23276, 26496, 30000, 33800, 37908, 42336, 47096, 52200, 57660, 63488, 69696, 76296, 83300, 90720, 98568, 106856
Offset: 1
Ulrich Schimke (ulrschimke(AT)aol.com)
On a 3 X 3-board, rook has 9*4 moves, so a(3)=36.
- E. Bonsdorff, K. Fabel and O. Riihimaa, Schach und Zahl (Chess and numbers), Walter Rau Verlag, Dusseldorf, 1966.
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Alexander M. Haupt, Bijective enumeration of rook walks, arXiv:2007.01018 [math.CO], 2020.
- M. Janjic and B. Petkovic, A Counting Function, arXiv preprint arXiv:1301.4550 [math.CO], 2013. - From _N. J. A. Sloane_, Feb 13 2013
- M. Janjic and B. Petkovic, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, J. Int. Seq. 17 (2014) # 14.3.5.
- Richard P. Stanley, Bijective Proof Problems, Problem 540 p. 63, (2015).
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
-
[(n-1)*2*n^2: n in [1..40]]; // Vincenzo Librandi, Jun 16 2011
-
Table[(n-1) 2 n^2,{n,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{0,8,36,96},40] (* Harvey P. Dale, May 12 2012 *)
A270205
Number of 2 X 2 planar subsets in an n X n X n cube.
Original entry on oeis.org
0, 0, 6, 36, 108, 240, 450, 756, 1176, 1728, 2430, 3300, 4356, 5616, 7098, 8820, 10800, 13056, 15606, 18468, 21660, 25200, 29106, 33396, 38088, 43200, 48750, 54756, 61236, 68208, 75690, 83700, 92256
Offset: 0
The 2 X 2 X 2 cube labeled with the integers 1 to 8 has the following six 2 X 2 planar subsets each containing 4 cells: 1,2,3,4; 5,6,7,8; 1,2,5,6; 3,4,7,8; 1,4,5,8; 2,3,6,7.
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Allan Bickle and Zhongyuan Che, Irregularities of Maximal k-degenerate Graphs, Discrete Applied Math. 331 (2023) 70-87.
- Allan Bickle, A Survey of Maximal k-degenerate Graphs and k-Trees, Theory and Applications of Graphs 0 1 (2024) Article 5.
- Craig Knecht, Cube assembly from different 2x2 planar criteria.
- Craig Knecht, F1 code most-perfect magic cube 960 examples.
- Craig Knecht, F1 code reversible cube 960 examples.
- Craig Knecht, magic space.
- Craig Knecht, Most-perfect space.
- Walter Trump, Most-Perfect magic cube.
- Walter Trump, 6 unique neighbors for the most-perfect magic cube.
- Wikipedia, Most-perfect magic square translated to a cube via the Hilbert space filling curve.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
-
[3*n^3 - 6*n^2 + 3*n: n in [0..50]]; // Wesley Ivan Hurt, Mar 13 2016
-
A270205:=n->3*n^3-6*n^2+3*n: seq(A270205(n), n=0..50); # Wesley Ivan Hurt, Mar 13 2016
-
Table[3*n^3 - 6*n^2 + 3*n, {n, 0, 50}] (* Wesley Ivan Hurt, Mar 13 2016 *)
CoefficientList[Series[(6 (x^2 + 2 x^3))/(-1 + x)^4, {x, 0, 32}], x] (* Michael De Vlieger, Mar 15 2016 *)
-
concat([0, 0], Vec(6*x^2*(1+2*x)/(x-1)^4 + O(x^100))) \\ Altug Alkan, Mar 14 2016
-
a(n) = 3*n^3 - 6*n^2 + 3*n \\ Charles R Greathouse IV, Mar 15 2016
A107661
Array read by antidiagonals: T(n,m) = Sum m^max(k,n-k),k=0..n.
Original entry on oeis.org
1, 1, 2, 1, 4, 3, 1, 6, 10, 4, 1, 8, 21, 24, 5, 1, 10, 36, 72, 52, 6, 1, 12, 55, 160, 225, 112, 7, 1, 14, 78, 300, 656, 702, 232, 8, 1, 16, 105, 504, 1525, 2688, 2133, 480, 9, 1, 18, 136, 784, 3060, 7750, 10816, 6480, 976, 10, 1, 20, 171, 1152, 5537, 18576, 38875
Offset: 0
The array starts in row n=0 and column m=1 as:
1, 1, 1, 1, 1, 1,...
2, 4, 6, 8, 10, 12,...
3, 10, 21, 36, 55, 78,...
4, 24, 72, 160, 300, 504,...
5, 52, 225, 656, 1525, 3060,...
6, 112, 702, 2688, 7750,18576,...
7, 232, 2133,10816,38875,111672,...
8, 480, 6480,43520,195000,671328,...
A363706
a(n) is the sigma irregularity of the n-th power of a path graph of length at least 3*n.
Original entry on oeis.org
2, 14, 52, 140, 310, 602, 1064, 1752, 2730, 4070, 5852, 8164, 11102, 14770, 19280, 24752, 31314, 39102, 48260, 58940, 71302, 85514, 101752, 120200, 141050, 164502, 190764, 220052, 252590, 288610, 328352, 372064, 420002, 472430, 529620, 591852, 659414, 732602, 811720, 897080, 989002
Offset: 1
A path of length at least 3 has two edges between vertices with degrees 1 and 2. Thus a(1) = 2.
-
Table[(n^4 + 2*n^3 + 2*n^2 + n)/3, {n, 1, 40}] (* Amiram Eldar, Jul 28 2023 *)
Showing 1-6 of 6 results.
Comments