cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A006002 a(n) = n*(n+1)^2/2.

Original entry on oeis.org

0, 2, 9, 24, 50, 90, 147, 224, 324, 450, 605, 792, 1014, 1274, 1575, 1920, 2312, 2754, 3249, 3800, 4410, 5082, 5819, 6624, 7500, 8450, 9477, 10584, 11774, 13050, 14415, 15872, 17424, 19074, 20825, 22680, 24642, 26714, 28899, 31200, 33620, 36162, 38829, 41624
Offset: 0

Views

Author

Keywords

Comments

a(n) is the largest number that is not the sum of distinct numbers of form kn+1, k >= 0. - David W. Wilson, Dec 11 1999
Sum of the nontriangular numbers between successive triangular numbers. 1, (2), 3, (4, 5), 6, (7, 8, 9), 10, (11, 12, 13, 14), 15, ... Sum of the terms in brackets. Or sum of n consecutive integers beginning with T(n) + 1, where T(n) = n(n+1)/2. - Amarnath Murthy, Aug 27 2005
Apparently this is also the splittance (as defined by Hammer & Simeone, 1977) of the Kneser graphs of the form K(n+3,2). - Felix Goldberg (felixg(AT)tx.technion.ac.il), Jul 13 2009
Row sums of triangle A159797. - Omar E. Pol, Jul 24 2009
The same results occur when one plots the points (1,3), (3,6), (6,10), (10,15), and so on, for all the triangular numbers and finds the area beneath. Take three consecutive triangular numbers and label them a, b, c; the area created is simply (b-a)*(b+c)/2. Thus for 6,10,15 the area beneath the line defined by the points (6,10) and (10,15) is (10-6)*(10+15)/2 = 50. - J. M. Bergot, Jun 28 2011
Let P = ab where a and b are nonequal prime numbers > 1. Let Q be the product of all divisors of P^n. Q can be expressed as P^k, where k = n*(n+1)^2/2. This follows from the fact that all divisors are of the form a^i*b^j, for i,j from 0 to n. An example is given below. In the more general case, where P is the product of m nonequal prime numbers, k = n*(n+1)^m/2. When m=3, the sequence is the same as A092364. - James A. Raymond & Douglas Raymond, Dec 04 2011
For n > 0: sum of n-th row in A014132, seen as a triangle read by rows. - Reinhard Zumkeller, Dec 12 2012
Partial sums of A005449. - Omar E. Pol, Jan 12 2013
a(n) is the sum of x (or y) coordinates for an n X n square lattice in the upper right quadrant of Z^2 whose corner points are (0, 0), (0, n), (n, 0), and (n, n). - Joseph Wheat, Feb 03 2018
a(n) is the number of permutations of [n+2] that contain exactly 2 elements which are not left-to-right minimal. E.g., the 9 permutations comprising a(2) are 2134, 2143, 3124, 3142, 4123, 4132, 2314, 2413, 3412. - Andy Niedermaier, May 07 2022

Examples

			Let P^n=6^2. The product of the divisors of 36 = 10077796 = 6^9, i.e., for n=2, k=9. - _James A. Raymond_ & Douglas Raymond, Dec 04 2011
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002411: -a(-1-n).
Cf. A000914 (partial sums), A005449 (first differences).
Cf. similar sequences of the type n*(n+1)*(n+k)/2 listed in A267370.
A bisection of A330298.

Programs

Formula

G.f.: x*(x + 2)/(1 - x)^4. - Michael Somos, Jan 30 2004
a(n) = (n + 1) * binomial(n+1, 2). - Zerinvary Lajos, Jan 10 2006
a(n) = A035006(n+1)/4. - Johannes W. Meijer, Feb 04 2010
a(n) = 2*binomial(n+1, 2) + 3*binomial(n+1, 3). - Gary Detlefs, Jun 06 2010
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Harvey P. Dale, Aug 14 2012
a(n) = A000292(n) + A000330(n). - Omar E. Pol, Jan 11 2013
a(n) = A045991(n+1)/2. - J. M. Bergot, Aug 10 2013
a(n) = Sum_{j=1..n} Sum_{i=1..j} (2*j - i + 1). - Wesley Ivan Hurt, Nov 17 2014
a(n) = Sum_{i=0..n} n*(n - i) + i. - Bruno Berselli, Jan 13 2016
a(n) = t(n, A000217(n)), where t(h,k) = A000217(h) + h*k. - Bruno Berselli, Feb 28 2017
Sum_{n>0} 1/a(n) = 4 - Pi^2/3. - Jaume Oliver Lafont, Jul 11 2017 [corrected by Amiram Eldar, Jan 28 2022]
E.g.f.: exp(x)*x*(4 + 5*x + x^2)/2. - Stefano Spezia, May 21 2021
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/6 + 4*log(2) - 4. - Amiram Eldar, Jan 28 2022
From J.S. Seneschal, Jun 27 2024: (Start)
a(n) = (A002378(n)^2/2)/n = (n+1)/2 * A002378(n).
a(n) = A027480(n) - A000217(n). (End)

A049450 Pentagonal numbers multiplied by 2: a(n) = n*(3*n-1).

Original entry on oeis.org

0, 2, 10, 24, 44, 70, 102, 140, 184, 234, 290, 352, 420, 494, 574, 660, 752, 850, 954, 1064, 1180, 1302, 1430, 1564, 1704, 1850, 2002, 2160, 2324, 2494, 2670, 2852, 3040, 3234, 3434, 3640, 3852, 4070, 4294, 4524, 4760, 5002, 5250, 5504, 5764
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Comments

From Floor van Lamoen, Jul 21 2001: (Start)
Write 1,2,3,4,... in a hexagonal spiral around 0, then a(n) is the sequence found by reading the line from 0 in the direction 0,2,.... The spiral begins:
.
56--55--54--53--52
/ \
57 33--32--31--30 51
/ / \ \
58 34 16--15--14 29 50
/ / / \ \ \
59 35 17 5---4 13 28 49
/ / / / \ \ \ \
60 36 18 6 0 3 12 27 48
/ / / / / . / / / /
61 37 19 7 1---2 11 26 47
\ \ \ \ . / / /
62 38 20 8---9--10 25 46
\ \ \ . / /
63 39 21--22--23--24 45
\ \ . /
64 40--41--42--43--44
\ .
65--66--67--68--69--70
(End)
Starting with offset 1 = binomial transform of [2, 8, 6, 0, 0, 0, ...]. - Gary W. Adamson, Jan 09 2009
Number of possible pawn moves on an (n+1) X (n+1) chessboard (n=>3). - Johannes W. Meijer, Feb 04 2010
a(n) = A069905(6n-1): Number of partitions of 6*n-1 into 3 parts. - Adi Dani, Jun 04 2011
Even octagonal numbers divided by 4. - Omar E. Pol, Aug 19 2011
Partial sums give A011379. - Omar E. Pol, Jan 12 2013
First differences are A016933; second differences equal 6. - Bob Selcoe, Apr 02 2015
For n >= 1, the continued fraction expansion of sqrt(27*a(n)) is [9n-2; {2, 2n-1, 6, 2n-1, 2, 18n-4}]. - Magus K. Chu, Oct 13 2022

Examples

			On a 4 X 4 chessboard pawns at the second row have (3+4+4+3) moves and pawns at the third row have (2+3+3+2) moves so a(3) = 24. - _Johannes W. Meijer_, Feb 04 2010
From _Adi Dani_, Jun 04 2011: (Start)
a(1)=2: the partitions of 6*1-1=5 into 3 parts are [1,1,3] and[1,2,2].
a(2)=10: the partitions of 6*2-1=11 into 3 parts are [1,1,9], [1,2,8], [1,3,7], [1,4,6], [1,5,5], [2,2,7], [2,3,6], [2,4,5], [3,3,5], and [3,4,4].
(End)
.
.                                                         o
.                                                       o o o
.                                      o              o o o o o
.                                    o o o          o o o o o o o
.                       o          o o o o o      o o o o o o o o o
.                     o o o      o o o o o o o    o o o o o o o o o
.            o      o o o o o    o o o o o o o    o o o o o o o o o
.          o o o    o o o o o    o o o o o o o    o o o o o o o o o
.    o     o o o    o o o o o    o o o o o o o    o o o o o o o o o
.    o     o o o    o o o o o    o o o o o o o    o o o o o o o o o
.    2      10         24             44                 70
- _Philippe Deléham_, Mar 30 2013
		

Crossrefs

Cf. A000567.
Bisection of A001859. Cf. A045944, A000326, A033579, A027599, A049451.
Cf. A033586 (King), A035005 (Queen), A035006 (Rook), A035008 (Knight) and A002492 (Bishop).
Cf. numbers of the form n*(n*k-k+4)/2 listed in A226488. [Bruno Berselli, Jun 10 2013]
Cf. sequences listed in A254963.

Programs

  • GAP
    List([0..50], n-> n*(3*n-1)); # G. C. Greubel, Aug 31 2019
  • Magma
    [n*(3*n-1) : n in [0..50]]; // Wesley Ivan Hurt, Sep 24 2017
    
  • Maple
    seq(n*(3*n-1),n=0..44); # Zerinvary Lajos, Jun 12 2007
  • Mathematica
    Table[n(3n-1),{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{0,2,10},50] (* Harvey P. Dale, Jun 21 2014 *)
    2*PolygonalNumber[5,Range[0,50]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 01 2018 *)
  • PARI
    a(n)=n*(3*n-1) \\ Charles R Greathouse IV, Nov 20 2012
    
  • Sage
    [n*(3*n-1) for n in (0..50)] # G. C. Greubel, Aug 31 2019
    

Formula

O.g.f.: A(x) = 2*x*(1+2*x)/(1-x)^3.
a(n) = A049452(n) - A033428(n). - Zerinvary Lajos, Jun 12 2007
a(n) = 2*A000326(n), twice pentagonal numbers. - Omar E. Pol, May 14 2008
a(n) = A022264(n) - A000217(n). - Reinhard Zumkeller, Oct 09 2008
a(n) = a(n-1) + 6*n - 4 (with a(0)=0). - Vincenzo Librandi, Aug 06 2010
a(n) = A014642(n)/4 = A033579(n)/2. - Omar E. Pol, Aug 19 2011
a(n) = A000290(n) + A000384(n) = A000217(n) + A000566(n). - Omar E. Pol, Jan 11 2013
a(n+1) = A014107(n+2) + A000290(n). - Philippe Deléham, Mar 30 2013
E.g.f.: x*(2 + 3*x)*exp(x). - Vincenzo Librandi, Apr 28 2016
a(n) = (2/3)*A000217(3*n-1). - Bruno Berselli, Feb 13 2017
a(n) = A002061(n) + A056220(n). - Bruce J. Nicholson, Sep 21 2017
From Amiram Eldar, Feb 20 2022: (Start)
Sum_{n>=1} 1/a(n) = 3*log(3)/2 - Pi/(2*sqrt(3)).
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/sqrt(3) - 2*log(2). (End)
From Leo Tavares, Feb 23 2022: (Start)
a(n) = A003215(n) - A016813(n).
a(n) = 2*A000290(n) + 2*A000217(n-1). (End)

A035008 Total number of possible knight moves on an (n+2) X (n+2) chessboard, if the knight is placed anywhere.

Original entry on oeis.org

0, 16, 48, 96, 160, 240, 336, 448, 576, 720, 880, 1056, 1248, 1456, 1680, 1920, 2176, 2448, 2736, 3040, 3360, 3696, 4048, 4416, 4800, 5200, 5616, 6048, 6496, 6960, 7440, 7936, 8448, 8976, 9520, 10080, 10656, 11248, 11856, 12480, 13120, 13776
Offset: 0

Views

Author

Ulrich Schimke (ulrschimke(AT)aol.com), Dec 11 1999

Keywords

Comments

16 times the triangular numbers A000217.
Centered 16-gonal numbers A069129, minus 1. Also, sequence found by reading the segment (0, 16) together with the line from 16, in the direction 16, 48, ..., in the square spiral whose vertices are the triangular numbers A000217. - Omar E. Pol, Apr 26 2008, Nov 20 2008
For n >= 1, number of permutations of n+1 objects selected from 5 objects v, w, x, y, z with repetition allowed, containing n-1 v's. Examples: at n=1, n-1=0 (i.e., zero v's), and a(1)=16 because we have ww, wx, wy, wz, xw, xx, xy, xz, yw, yx, yy, yz, zw, zx, zy, zz; at n=2, n-1=1 (i.e., one v), and there are 3 permutations corresponding to each one in the n=1 case (e.g., the single v can be inserted in any of three places in the 2-object permutation xy, yielding vxy, xvy, and xyv), so a(2) = 3*a(1) = 3*16 = 48; at n=3, n-1=2 (i.e., two v's), and a(3) = C(4,2)*a(1) = 6*16 = 96; etc. - Zerinvary Lajos, Aug 07 2008 (this needs clarification, Joerg Arndt, Feb 23 2014)
Sequence found by reading the line from 0, in the direction 0, 16, ... and the same line from 0, in the direction 0, 48, ..., in the square spiral whose vertices are the generalized 18-gonal numbers. - Omar E. Pol, Oct 03 2011
For n > 0, a(n) is the area of the triangle with vertices at ((n-1)^2, n^2), ((n+1)^2, (n+2)^2), and ((n+3)^2, (n+2)^2). - J. M. Bergot, May 22 2014
For n > 0, a(n) is the number of self-intersecting points in star polygon {4*(n+1)/(2*n+1)}. - Bui Quang Tuan, Mar 28 2015
Equivalently: integers k such that k$ / (k/2)! and k$ / (k/2+1)! are both squares when A000178 (k) = k$ = 1!*2!*...*k! is the superfactorial of k (see A348692 for further information). - Bernard Schott, Dec 02 2021

Examples

			3 X 3-Board: knight can be placed in 8 positions with 2 moves from each, so a(1) = 16.
		

Crossrefs

Cf. A033586 (King), A035005 (Queen), A035006 (Rook), A002492 (Bishop) and A049450 (Pawn).
Cf. A348692.
Subsequence of A008586 and of A349081.

Programs

Formula

a(n) = 8*n*(n+1).
G.f.: 16*x/(1-x)^3.
a(n) = A069129(n+1) - 1. - Omar E. Pol, Apr 26 2008
a(n) = binomial(n+1,2)*4^2, n >= 0. - Zerinvary Lajos, Aug 07 2008
a(n) = 8*n^2 + 8*n = 16*A000217(n) = 8*A002378(n) = 4*A046092(n) = 2*A033996(n). - Omar E. Pol, Dec 12 2008
a(n) = a(n-1) + 16*n, with a(0)=0. - Vincenzo Librandi, Nov 17 2010
E.g.f.: 8*exp(x)*x*(2 + x). - Stefano Spezia, May 19 2021
From Amiram Eldar, Feb 22 2023: (Start)
Sum_{n>=1} 1/a(n) = 1/8.
Sum_{n>=1} (-1)^(n+1)/a(n) = (2*log(2) - 1)/8.
Product_{n>=1} (1 - 1/a(n)) = -(8/Pi)*cos(sqrt(3/2)*Pi/2).
Product_{n>=1} (1 + 1/a(n)) = (8/Pi)*cos(Pi/(2*sqrt(2))). (End)

Extensions

More terms from Erich Friedman
Minor errors corrected and edited by Johannes W. Meijer, Feb 04 2010

A002492 Sum of the first n even squares: 2*n*(n+1)*(2*n+1)/3.

Original entry on oeis.org

0, 4, 20, 56, 120, 220, 364, 560, 816, 1140, 1540, 2024, 2600, 3276, 4060, 4960, 5984, 7140, 8436, 9880, 11480, 13244, 15180, 17296, 19600, 22100, 24804, 27720, 30856, 34220, 37820, 41664, 45760, 50116, 54740, 59640, 64824, 70300, 76076, 82160
Offset: 0

Views

Author

Keywords

Comments

Total number of possible bishop moves on an n+1 X n+1 chessboard, if the bishop is placed anywhere. E.g., on a 3 X 3-Board: bishop has 8 X 2 moves and 1 X 4 moves, so a(2)=20. - Ulrich Schimke (ulrschimke(AT)aol.com)
Let M_n denote the n X n matrix M_n(i,j)=(i+j)^2; then the characteristic polynomial of M_n is x^n - a(n)x^(n-1) - .... - Michael Somos, Nov 14 2002
Partial sums of A016742. - Lekraj Beedassy, Jun 19 2004
0,4,20,56,120 gives the number of electrons in closed shells in the double shell periodic system of elements. This is a new interpretation of the periodic system of the elements. The factor 4 in the formula 4*n(n+1)(2n+1)/6 plays a significant role, since it designates the degeneracy of electronic states in this system. Closed shells with more than 120 electrons are not expected to exist. - Karl-Dietrich Neubert (kdn(AT)neubert.net)
Inverse binomial transform of A240434. - Wesley Ivan Hurt, Apr 13 2014
Atomic number of alkaline-earth metals of period 2n. - Natan Arie Consigli, Jul 03 2016
a(n) are the negative cubic coefficients in the expansion of sin(kx) into powers of sin(x) for the odd k: sin(kx) = k sin(x) - c(k) sin^3(x) + O(sin^5(x)); a(n) = c(2n+1) = A000292(2n). - Mathias Zechmeister, Jul 24 2022
Also the number of distinct series-parallel networks under series-parallel reduction on three unlabeled edges of n element kinds. - Michael R. Hayashi, Aug 02 2023

References

  • A. O. Barut, Group Structure of the Periodic System, in Wybourne, Ed., The Structure of Matter, University of Canterbury Press, Christchurch, 1972, p. 126.
  • Edward G. Mazur, Graphic Representation of the Periodic System during One Hundred Years, University of Alabama Press, Alabama, 1974.
  • W. Permans and J. Kemperman, "Nummeringspribleem van S. Dockx, Mathematisch Centrum. Amsterdam," Rapport ZW; 1949-005, 4 leaves, 19.8 X 34 cm.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A033586 (King), A035005 (Queen), A035006 (Rook), A035008 (Knight) and A049450 (Pawn).

Programs

  • Magma
    [2*n*(n+1)*(2*n+1)/3: n in [0..40]]; // Vincenzo Librandi, Jun 16 2011
  • Maple
    A002492:=n->2*n*(n+1)*(2*n+1)/3; seq(A002492(n), n=0..50); # Wesley Ivan Hurt, Apr 04 2014
  • Mathematica
    Table[2n(n+1)(2n+1)/3, {n,0,40}] (* or *) Binomial[2*Range[0,40]+2,3] (* or *) LinearRecurrence[{4,-6,4,-1}, {0,4,20,56},40] (* Harvey P. Dale, Aug 15 2012 *)
    Accumulate[(2*Range[0,40])^2] (* Harvey P. Dale, Jun 04 2019 *)
  • PARI
    a(n)=2*n*(n+1)*(2*n+1)/3
    

Formula

G.f.: 4*x*(1+x)/(1-x)^4. - Simon Plouffe in his 1992 dissertation
a(-1-n) = -a(n).
a(n) = 4*A000330(n) = 2*A006331(n) = A000292(2*n).
a(n) = (-1)^(n+1)*A053120(2*n+1,3) (fourth unsigned column of Chebyshev T-triangle, zeros omitted).
a(n) = binomial(2*n+2, 3). - Lekraj Beedassy, Jun 19 2004
A035005(n+1) = a(n) + A035006(n+1) since Queen = Bishop + Rook. - Johannes W. Meijer, Feb 04 2010
a(n) - a(n-1) = 4*n^2. - Joerg Arndt, Jun 16 2011
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4) for n>3. - Harvey P. Dale, Aug 15 2012
a(n) = Sum_{k=0..3} C(n-2+k,n-2)*C(n+3-k,n), for n>2. - J. M. Bergot, Jun 14 2014
a(n) = 2*A006331(n). - R. J. Mathar, May 28 2016
From Natan Arie Consigli Jul 03 2016: (Start)
a(n) = A166464(n) - 1.
a(n) = A168380(2*n). (End)
a(n) = Sum_{i=0..n} A005408(i)*A005408(i-1)+1 with A005408(-1):=-1. - Bruno Berselli, Jan 09 2017
a(n) = A002412(n) + A016061(n). - Bruce J. Nicholson, Nov 12 2017
From Amiram Eldar, Jan 04 2022: (Start)
Sum_{n>=1} 1/a(n) = 9/2 - 6*log(2).
Sum_{n>=1} (-1)^(n+1)/a(n) = 3*Pi/2 - 9/2. (End)
a(n) = A081277(3, n-1) = (1+2*n)*binomial(n+1, n-2)*2^2/(n-1) for n > 0. - Mathias Zechmeister, Jul 26 2022
E.g.f.: 2*exp(x)*x*(6 + 9*x + 2*x^2)/3. - Stefano Spezia, Jul 31 2022

Extensions

Minor errors corrected and edited by Johannes W. Meijer, Feb 04 2010
Title modified by Charles R Greathouse IV at the suggestion of J. M. Bergot, Apr 05 2014

A006566 Dodecahedral numbers: a(n) = n*(3*n - 1)*(3*n - 2)/2.

Original entry on oeis.org

0, 1, 20, 84, 220, 455, 816, 1330, 2024, 2925, 4060, 5456, 7140, 9139, 11480, 14190, 17296, 20825, 24804, 29260, 34220, 39711, 45760, 52394, 59640, 67525, 76076, 85320, 95284, 105995, 117480, 129766, 142880, 156849, 171700, 187460, 204156
Offset: 0

Views

Author

Keywords

Comments

Schlaefli symbol for this polyhedron: {5,3}.
A093485 = first differences; A124388 = second differences; third differences = 27. - Reinhard Zumkeller, Oct 30 2006
One of the 5 Platonic polyhedral (tetrahedral, cube, octahedral, dodecahedral and icosahedral) numbers (cf. A053012). - Daniel Forgues, May 14 2010
From Peter Bala, Sep 09 2013: (Start)
a(n) = binomial(3*n,3). Two related sequences are binomial(3*n+1,3) (A228887) and binomial(3*n+2,3) (A228888). The o.g.f.'s for these three sequences are rational functions whose numerator polynomials are obtained from the fourth row [1, 4, 10, 16, 19, 16, 10, 4, 1] of the triangle of trinomial coefficients A027907 by taking every third term:
Sum_{n >= 1} binomial(3*n,3)*x^n = (x + 16*x^2 + 10*x^3)/(1-x)^4;
Sum_{n >= 1} binomial(3*n+1,3)*x^n = (4*x + 19*x^2 + 4*x^3)/(1-x)^4;
Sum_{n >= 1} binomial(3*n+2,3)*x^n = (10*x + 16*x^2 + x^3)/(1-x)^4. (End)

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000292 (tetrahedral numbers), A000578 (cubes), A005900 (octahedral numbers), A006564 (icosahedral numbers).

Programs

  • Haskell
    a006566 n = n * (3 * n - 1) * (3 * n - 2) `div` 2
    a006566_list = scanl (+) 0 a093485_list  -- Reinhard Zumkeller, Jun 16 2013
    
  • Magma
    [n*(3*n-1)*(3*n-2)/2: n in [0..40]]; // Vincenzo Librandi, Dec 11 2015
  • Maple
    A006566:=(1+16*z+10*z**2)/(z-1)**4; # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    Table[n(3n-1)(3n-2)/2,{n,0,100}] (* Vladimir Joseph Stephan Orlovsky, Apr 13 2011 *)
    LinearRecurrence[{4,-6,4,-1},{0,1,20,84},40] (* Harvey P. Dale, Jul 24 2013 *)
    CoefficientList[Series[x (1 + 16 x + 10 x^2)/(1 - x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Dec 11 2015 *)
  • PARI
    a(n)=n*(3*n-1)*(3*n-2)/2
    

Formula

G.f.: x(1 + 16x + 10x^2)/(1 - x)^4.
a(n) = A000292(3n-3) = A054776(n)/6 = n*A060544(n).
a(n) = C(n+2,3) + 16 C(n+1,3) + 10 C(n,3).
a(0)=0, a(1)=1, a(2)=20, a(3)=84, a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Harvey P. Dale, Jul 24 2013
a(n) = binomial(3*n,3). a(-n) = - A228888(n). Sum_{n>=1} 1/a(n) = 1/2*( sqrt(3)*Pi - 3*log(3) ). Sum_{n>=1} (-1)^n/a(n) = 1/3*sqrt(3)*Pi - 4*log(2). - Peter Bala, Sep 09 2013
a(n) = A006564(n) + A035006(n). - Peter M. Chema, May 04 2016
E.g.f.: x*(2 + 18*x + 9*x^2)*exp(x)/2. - Ilya Gutkovskiy, May 04 2016
From Amiram Eldar, Jan 09 2024: (Start)
Sum_{n>=1} 1/a(n) = (sqrt(3)*Pi - 3*log(3))/2 (A295421).
Sum_{n>=1} (-1)^(n+1)/a(n) = (12*log(2) - sqrt(3)*Pi)/3. (End)

Extensions

More terms from Henry Bottomley, Nov 23 2001

A033586 a(n) = 4*n*(2*n + 1).

Original entry on oeis.org

0, 12, 40, 84, 144, 220, 312, 420, 544, 684, 840, 1012, 1200, 1404, 1624, 1860, 2112, 2380, 2664, 2964, 3280, 3612, 3960, 4324, 4704, 5100, 5512, 5940, 6384, 6844, 7320, 7812, 8320, 8844, 9384, 9940, 10512, 11100, 11704, 12324, 12960, 13612, 14280
Offset: 0

Views

Author

Keywords

Comments

Number of possible king moves on an (n+1) X (n+1) chessboard. E.g., for a 3 X 3 board: king has 4*5 moves, 4*3 moves and 1*8 moves, so a(2)=40. - Ulrich Schimke (ulrschimke(AT)aol.com)
Sequence found by reading the line from 0, in the direction 0, 12, ..., in the square spiral whose vertices are the triangular numbers A000217. Opposite numbers to the members of A085250 in the same spiral. - Omar E. Pol, Sep 03 2011
Sum of the numbers from 3n to 5n. - Wesley Ivan Hurt, Dec 22 2015
From Emeric Deutsch, Nov 09 2016: (Start)
a(n) is the second Zagreb index of the friendship graph F[n]. The second Zagreb index of a simple connected graph is the sum of the degree products d(i)d(j) over all edges ij of the graph. The friendship graph (or Dutch windmill graph) F[n] can be constructed by joining n copies of the cycle graph C[3] with a common vertex.
For instance, a(2)=40. Indeed, the friendship graph F[2] has 2 edges with end-point degrees 2,2 and 4 edges with end-point degrees 2,4. Then the second Zagreb index is 2*4 + 4*8 = 40. (End)
a(n) is the number of vertices in conjoined n X n dodecagons which are arranged into a square array, a.k.a. 3-4-3-12 tiling. - Donghwi Park, Dec 20 2020

References

  • E. Bonsdorff, K. Fabel and O. Riihimaa, Schach und Zahl (Chess and numbers), Walter Rau Verlag, Dusseldorf, 1966.

Crossrefs

Cf. A035005 (Queen), A035006 (Rook), A035008 (Knight), A002492 (Bishop) and A049450 (Pawn).

Programs

Formula

Binomial transform of [12, 28, 16, 0, 0, 0, ...] = (12, 40, 84, 144, 220, ...). - Gary W. Adamson, Oct 24 2007
a(n) = 4 * A014105(n). - Johannes W. Meijer, Feb 04 2010
a(n) = 16*n + a(n-1) - 4 (with a(0)=0). - Vincenzo Librandi, Aug 05 2010
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3. - Harvey P. Dale, May 10 2011
G.f.: 4*x*(3+x)/(1-3*x+3*x^2-x^3). - Colin Barker, Jan 06 2012
From Wesley Ivan Hurt, Feb 25 2014, Dec 22 2015: (Start)
a(n) = A008586(n) * A005408(n).
a(n) = Sum_{i=3n..5n} i.
a(-n) = A085250(n). (End)
E.g.f.: (8*x^2 + 12*x)*exp(x). - G. C. Greubel, Jul 16 2017
From Vaclav Kotesovec, Dec 21 2020: (Start)
Sum_{n>=1} 1/a(n) = (1 - log(2))/2.
Sum_{n>=1} (-1)^n/a(n) = 1/2 - Pi/8 - log(2)/4. (End)

Extensions

More terms from Erich Friedman
Crossref added, minor errors corrected and edited by Johannes W. Meijer, Feb 04 2010

A006564 Icosahedral numbers: a(n) = n*(5*n^2 - 5*n + 2)/2.

Original entry on oeis.org

1, 12, 48, 124, 255, 456, 742, 1128, 1629, 2260, 3036, 3972, 5083, 6384, 7890, 9616, 11577, 13788, 16264, 19020, 22071, 25432, 29118, 33144, 37525, 42276, 47412, 52948, 58899, 65280, 72106, 79392, 87153, 95404, 104160, 113436, 123247, 133608
Offset: 1

Views

Author

Keywords

Comments

Schlaefli symbol for this polyhedron: {3,5}.
One of the 5 Platonic polyhedral (tetrahedral, cube, octahedral, dodecahedral and icosahedral) numbers (cf. A053012). - Daniel Forgues, May 14 2010

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000292 (tetrahedral numbers), A000578 (cubes), A005900 (octahedral numbers), A006566 (dodecahedral numbers).

Programs

  • Haskell
    a006564 n = n * (5 * n * (n - 1) + 2) `div` 2
    -- Reinhard Zumkeller, Jun 16 2013
    
  • Magma
    [(5*n^3-5*n^2+2*n)/2: n in [1..100]] // Vincenzo Librandi, Nov 21 2010
    
  • Maple
    A006564:=(1+8*z+6*z**2)/(z-1)**4; # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    Table[n (5n^2-5n+2)/2,{n,40}] (* or *) LinearRecurrence[{4,-6,4,-1}, {1,12,48,124},40] (* Harvey P. Dale, May 26 2011 *)
  • PARI
    a(n)=5*n^2*(n-1)/2+n \\ Charles R Greathouse IV, Oct 07 2015

Formula

a(n) = C(n+2,3) + 8*C(n+1,3) + 6*C(n,3).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) with a(0)=1, a(1)=12, a(2)=48, a(3)=124. - Harvey P. Dale, May 26 2011
G.f.: x*(6*x^2 + 8*x + 1)/(x-1)^4. - Harvey P. Dale, May 26 2011
a(n) = A006566(n) - A035006(n). - Peter M. Chema, May 04 2016
E.g.f.: x*(2 + 10*x + 5*x^2)*exp(x)/2. - Ilya Gutkovskiy, May 04 2016
Sum_{n>=1} 1/a(n) = A175578. - Amiram Eldar, Jan 03 2022

A033580 Four times second pentagonal numbers: a(n) = 2*n*(3*n+1).

Original entry on oeis.org

0, 8, 28, 60, 104, 160, 228, 308, 400, 504, 620, 748, 888, 1040, 1204, 1380, 1568, 1768, 1980, 2204, 2440, 2688, 2948, 3220, 3504, 3800, 4108, 4428, 4760, 5104, 5460, 5828, 6208, 6600, 7004, 7420, 7848, 8288, 8740, 9204, 9680, 10168, 10668, 11180, 11704, 12240
Offset: 0

Views

Author

Keywords

Comments

Subsequence of A062717: A010052(6*a(n)+1) = 1. - Reinhard Zumkeller, Feb 21 2011
Sequence found by reading the line from 0, in the direction 0, 8,..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. Opposite numbers to the members of A139267 in the same spiral - Omar E. Pol, Sep 09 2011
a(n) is the number of edges of the octagonal network O(n,n); O(m,n) is defined by Fig. 1 of the Siddiqui et al. reference. - Emeric Deutsch May 13 2018
The partial sums of this sequence give A035006. - Leo Tavares, Oct 03 2021

Crossrefs

Programs

Formula

a(n) = a(n-1) +12*n -4 (with a(0)=0). - Vincenzo Librandi, Aug 05 2010
G.f.: 4*x*(2+x)/(1-x)^3. - Colin Barker, Feb 13 2012
a(-n) = A033579(n). - Michael Somos, Jun 09 2014
E.g.f.: 2*x*(4 + 3*x)*exp(x). - G. C. Greubel, Oct 09 2019
From Amiram Eldar, Jan 14 2021: (Start)
Sum_{n>=1} 1/a(n) = 3/2 - Pi/(4*sqrt(3)) - 3*log(3)/4.
Sum_{n>=1} (-1)^(n+1)/a(n) = -3/2 + Pi/(2*sqrt(3)) + log(2). (End)
From Leo Tavares, Oct 12 2021: (Start)
a(n) = A003154(n+1) - A016813(n). See Crossed Stars illustration.
a(n) = 4*A005449(n). See Four Quarter Star Crosses illustration.
a(n) = 2*A049451(n).
a(n) = A046092(n-1) + A033996(n). See Triangulated Star Crosses illustration.
a(n) = 4*A000217(n-1) + 8*A000217(n).
a(n) = 4*A000217(n-1) + 4*A002378. See Oblong Star Crosses illustration.
a(n) = A016754(n) + 4*A000217(n). See Crossed Diamond Stars illustration.
a(n) = 2*A001105(n) + 4*A000217(n).
a(n) = A016742(n) + A046092(n).
a(n) = 4*A000290(n) + 4*A000217(n). (End)

A035005 Number of possible queen moves on an n X n chessboard.

Original entry on oeis.org

0, 12, 56, 152, 320, 580, 952, 1456, 2112, 2940, 3960, 5192, 6656, 8372, 10360, 12640, 15232, 18156, 21432, 25080, 29120, 33572, 38456, 43792, 49600, 55900, 62712, 70056, 77952, 86420, 95480, 105152, 115456, 126412, 138040, 150360
Offset: 1

Views

Author

Ulrich Schimke (ulrschimke(AT)aol.com)

Keywords

Comments

The number of (2 to n) digit sequences that can be found reading in any orientation, including diagonals, in an (n X n) grid. - Paul Cleary, Aug 12 2005

Examples

			3 X 3 board: queen has 8*6 moves and 1*8 moves, so a(3)=56.
		

Crossrefs

Cf. A033586 (King), A035006 (Rook), A035008 (Knight), A002492 (Bishop) and A049450 (Pawn).
Cf. A162147.

Programs

  • Magma
    [(n-1)*2*n^2 + (4*n^3-6*n^2+2*n)/3: n in [1..40]]; // Vincenzo Librandi, Jun 16 2011
  • Mathematica
    Table[(n-1)2n^2+(4n^3-6n^2+2n)/3,{n,40}] (* or *) LinearRecurrence[ {4,-6,4,-1},{0,12,56,152},40] (* Harvey P. Dale, Aug 24 2011 *)

Formula

a(n) = (n-1)*2*n^2 + (4*n^3-6*n^2+2*n)/3.
From Johannes W. Meijer, Feb 04 2010: (Start)
a(n) = A002492(n-1) + A035006(n) since Queen = Bishop + Rook.
a(n) = 4 * A162147(n-1). (End)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(0)=0, a(1)=12, a(2)=56, a(3)=152. - Harvey P. Dale, Aug 24 2011
From Colin Barker, Mar 11 2012: (Start)
a(n) = 2*n*(1-6*n+5*n^2)/3.
G.f.: 4*x^2*(3+2*x)/(1-x)^4. (End)
E.g.f.: 2*exp(x)*x^2*(9 + 5*x)/3. - Stefano Spezia, Jul 31 2022

Extensions

More terms from Erich Friedman

A187189 T(n,k) = Number of n-turn rook's tours on a k X k board summed over all starting positions.

Original entry on oeis.org

1, 4, 0, 9, 8, 0, 16, 36, 8, 0, 25, 96, 108, 8, 0, 36, 200, 480, 288, 0, 0, 49, 360, 1400, 2208, 720, 0, 0, 64, 588, 3240, 9200, 9792, 1440, 0, 0, 81, 896, 6468, 27720, 58800, 40896, 2304, 0, 0, 100, 1296, 11648, 68208, 231840, 364800, 156672, 2664, 0, 0, 121, 1800
Offset: 1

Views

Author

R. H. Hardin, Mar 06 2011

Keywords

Examples

			Table starts
.1.4....9......16.......25........36........49........64.......81.....100
.0.8...36......96......200.......360.......588.......896.....1296....1800
.0.8..108.....480.....1400......3240......6468.....11648....19440...30600
.0.8..288....2208.....9200.....27720.....68208....146048...282528..505800
.0.0..720....9792....58800....231840....705600...1800960..4046112.8251200
.0.0.1440...40896...364800...1902240...7197120..21960960.57407616
.0.0.2304..156672..2169600..15220800..72182880.264520704
.0.0.2664..551232.12319200.118332000.709921800
.0.0.1512.1760256.66746400.893246400
.0.0....0.5013504
Some n=3 solutions for 3 X 3
..0..0..1....0..0..3....3..2..0....1..0..0....0..0..1....0..0..0....0..0..3
..0..0..0....0..0..2....0..1..0....0..0..0....0..3..2....0..0..0....0..0..1
..0..3..2....0..0..1....0..0..0....2..0..3....0..0..0....1..3..2....0..0..2
		

Crossrefs

Row 2 is A035006.

Formula

Empirical: T(1,k) = k^2.
Empirical: T(2,k) = 2*k^3 - 2*k^2.
Empirical: T(3,k) = 4*k^4 - 10*k^3 + 6*k^2.
Empirical: T(4,k) = 8*k^5 - 34*k^4 + 48*k^3 - 22*k^2.
Empirical: T(5,k) = 16*k^6 - 98*k^5 + 228*k^4 - 238*k^3 + 92*k^2.
Empirical: T(6,k) = 32*k^7 - 258*k^6 + 846*k^5 - 1426*k^4 + 1234*k^3 - 428*k^2.
Empirical: T(7,k) = 64*n^8 - 642*n^7 + 2718*n^6 - 6346*n^5 + 8770*n^4 - 6788*n^3 + 2224*n^2.
Empirical: T(8,k) = 128*k^9 - 1538*k^8 + 7956*k^7 - 23556*k^6 + 44586*k^5 - 55218*k^4 + 40894*k^3 - 13252*k^2.
Showing 1-10 of 11 results. Next