cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A049450 Pentagonal numbers multiplied by 2: a(n) = n*(3*n-1).

Original entry on oeis.org

0, 2, 10, 24, 44, 70, 102, 140, 184, 234, 290, 352, 420, 494, 574, 660, 752, 850, 954, 1064, 1180, 1302, 1430, 1564, 1704, 1850, 2002, 2160, 2324, 2494, 2670, 2852, 3040, 3234, 3434, 3640, 3852, 4070, 4294, 4524, 4760, 5002, 5250, 5504, 5764
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Comments

From Floor van Lamoen, Jul 21 2001: (Start)
Write 1,2,3,4,... in a hexagonal spiral around 0, then a(n) is the sequence found by reading the line from 0 in the direction 0,2,.... The spiral begins:
.
56--55--54--53--52
/ \
57 33--32--31--30 51
/ / \ \
58 34 16--15--14 29 50
/ / / \ \ \
59 35 17 5---4 13 28 49
/ / / / \ \ \ \
60 36 18 6 0 3 12 27 48
/ / / / / . / / / /
61 37 19 7 1---2 11 26 47
\ \ \ \ . / / /
62 38 20 8---9--10 25 46
\ \ \ . / /
63 39 21--22--23--24 45
\ \ . /
64 40--41--42--43--44
\ .
65--66--67--68--69--70
(End)
Starting with offset 1 = binomial transform of [2, 8, 6, 0, 0, 0, ...]. - Gary W. Adamson, Jan 09 2009
Number of possible pawn moves on an (n+1) X (n+1) chessboard (n=>3). - Johannes W. Meijer, Feb 04 2010
a(n) = A069905(6n-1): Number of partitions of 6*n-1 into 3 parts. - Adi Dani, Jun 04 2011
Even octagonal numbers divided by 4. - Omar E. Pol, Aug 19 2011
Partial sums give A011379. - Omar E. Pol, Jan 12 2013
First differences are A016933; second differences equal 6. - Bob Selcoe, Apr 02 2015
For n >= 1, the continued fraction expansion of sqrt(27*a(n)) is [9n-2; {2, 2n-1, 6, 2n-1, 2, 18n-4}]. - Magus K. Chu, Oct 13 2022

Examples

			On a 4 X 4 chessboard pawns at the second row have (3+4+4+3) moves and pawns at the third row have (2+3+3+2) moves so a(3) = 24. - _Johannes W. Meijer_, Feb 04 2010
From _Adi Dani_, Jun 04 2011: (Start)
a(1)=2: the partitions of 6*1-1=5 into 3 parts are [1,1,3] and[1,2,2].
a(2)=10: the partitions of 6*2-1=11 into 3 parts are [1,1,9], [1,2,8], [1,3,7], [1,4,6], [1,5,5], [2,2,7], [2,3,6], [2,4,5], [3,3,5], and [3,4,4].
(End)
.
.                                                         o
.                                                       o o o
.                                      o              o o o o o
.                                    o o o          o o o o o o o
.                       o          o o o o o      o o o o o o o o o
.                     o o o      o o o o o o o    o o o o o o o o o
.            o      o o o o o    o o o o o o o    o o o o o o o o o
.          o o o    o o o o o    o o o o o o o    o o o o o o o o o
.    o     o o o    o o o o o    o o o o o o o    o o o o o o o o o
.    o     o o o    o o o o o    o o o o o o o    o o o o o o o o o
.    2      10         24             44                 70
- _Philippe Deléham_, Mar 30 2013
		

Crossrefs

Cf. A000567.
Bisection of A001859. Cf. A045944, A000326, A033579, A027599, A049451.
Cf. A033586 (King), A035005 (Queen), A035006 (Rook), A035008 (Knight) and A002492 (Bishop).
Cf. numbers of the form n*(n*k-k+4)/2 listed in A226488. [Bruno Berselli, Jun 10 2013]
Cf. sequences listed in A254963.

Programs

  • GAP
    List([0..50], n-> n*(3*n-1)); # G. C. Greubel, Aug 31 2019
  • Magma
    [n*(3*n-1) : n in [0..50]]; // Wesley Ivan Hurt, Sep 24 2017
    
  • Maple
    seq(n*(3*n-1),n=0..44); # Zerinvary Lajos, Jun 12 2007
  • Mathematica
    Table[n(3n-1),{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{0,2,10},50] (* Harvey P. Dale, Jun 21 2014 *)
    2*PolygonalNumber[5,Range[0,50]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 01 2018 *)
  • PARI
    a(n)=n*(3*n-1) \\ Charles R Greathouse IV, Nov 20 2012
    
  • Sage
    [n*(3*n-1) for n in (0..50)] # G. C. Greubel, Aug 31 2019
    

Formula

O.g.f.: A(x) = 2*x*(1+2*x)/(1-x)^3.
a(n) = A049452(n) - A033428(n). - Zerinvary Lajos, Jun 12 2007
a(n) = 2*A000326(n), twice pentagonal numbers. - Omar E. Pol, May 14 2008
a(n) = A022264(n) - A000217(n). - Reinhard Zumkeller, Oct 09 2008
a(n) = a(n-1) + 6*n - 4 (with a(0)=0). - Vincenzo Librandi, Aug 06 2010
a(n) = A014642(n)/4 = A033579(n)/2. - Omar E. Pol, Aug 19 2011
a(n) = A000290(n) + A000384(n) = A000217(n) + A000566(n). - Omar E. Pol, Jan 11 2013
a(n+1) = A014107(n+2) + A000290(n). - Philippe Deléham, Mar 30 2013
E.g.f.: x*(2 + 3*x)*exp(x). - Vincenzo Librandi, Apr 28 2016
a(n) = (2/3)*A000217(3*n-1). - Bruno Berselli, Feb 13 2017
a(n) = A002061(n) + A056220(n). - Bruce J. Nicholson, Sep 21 2017
From Amiram Eldar, Feb 20 2022: (Start)
Sum_{n>=1} 1/a(n) = 3*log(3)/2 - Pi/(2*sqrt(3)).
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/sqrt(3) - 2*log(2). (End)
From Leo Tavares, Feb 23 2022: (Start)
a(n) = A003215(n) - A016813(n).
a(n) = 2*A000290(n) + 2*A000217(n-1). (End)

A035008 Total number of possible knight moves on an (n+2) X (n+2) chessboard, if the knight is placed anywhere.

Original entry on oeis.org

0, 16, 48, 96, 160, 240, 336, 448, 576, 720, 880, 1056, 1248, 1456, 1680, 1920, 2176, 2448, 2736, 3040, 3360, 3696, 4048, 4416, 4800, 5200, 5616, 6048, 6496, 6960, 7440, 7936, 8448, 8976, 9520, 10080, 10656, 11248, 11856, 12480, 13120, 13776
Offset: 0

Views

Author

Ulrich Schimke (ulrschimke(AT)aol.com), Dec 11 1999

Keywords

Comments

16 times the triangular numbers A000217.
Centered 16-gonal numbers A069129, minus 1. Also, sequence found by reading the segment (0, 16) together with the line from 16, in the direction 16, 48, ..., in the square spiral whose vertices are the triangular numbers A000217. - Omar E. Pol, Apr 26 2008, Nov 20 2008
For n >= 1, number of permutations of n+1 objects selected from 5 objects v, w, x, y, z with repetition allowed, containing n-1 v's. Examples: at n=1, n-1=0 (i.e., zero v's), and a(1)=16 because we have ww, wx, wy, wz, xw, xx, xy, xz, yw, yx, yy, yz, zw, zx, zy, zz; at n=2, n-1=1 (i.e., one v), and there are 3 permutations corresponding to each one in the n=1 case (e.g., the single v can be inserted in any of three places in the 2-object permutation xy, yielding vxy, xvy, and xyv), so a(2) = 3*a(1) = 3*16 = 48; at n=3, n-1=2 (i.e., two v's), and a(3) = C(4,2)*a(1) = 6*16 = 96; etc. - Zerinvary Lajos, Aug 07 2008 (this needs clarification, Joerg Arndt, Feb 23 2014)
Sequence found by reading the line from 0, in the direction 0, 16, ... and the same line from 0, in the direction 0, 48, ..., in the square spiral whose vertices are the generalized 18-gonal numbers. - Omar E. Pol, Oct 03 2011
For n > 0, a(n) is the area of the triangle with vertices at ((n-1)^2, n^2), ((n+1)^2, (n+2)^2), and ((n+3)^2, (n+2)^2). - J. M. Bergot, May 22 2014
For n > 0, a(n) is the number of self-intersecting points in star polygon {4*(n+1)/(2*n+1)}. - Bui Quang Tuan, Mar 28 2015
Equivalently: integers k such that k$ / (k/2)! and k$ / (k/2+1)! are both squares when A000178 (k) = k$ = 1!*2!*...*k! is the superfactorial of k (see A348692 for further information). - Bernard Schott, Dec 02 2021

Examples

			3 X 3-Board: knight can be placed in 8 positions with 2 moves from each, so a(1) = 16.
		

Crossrefs

Cf. A033586 (King), A035005 (Queen), A035006 (Rook), A002492 (Bishop) and A049450 (Pawn).
Cf. A348692.
Subsequence of A008586 and of A349081.

Programs

Formula

a(n) = 8*n*(n+1).
G.f.: 16*x/(1-x)^3.
a(n) = A069129(n+1) - 1. - Omar E. Pol, Apr 26 2008
a(n) = binomial(n+1,2)*4^2, n >= 0. - Zerinvary Lajos, Aug 07 2008
a(n) = 8*n^2 + 8*n = 16*A000217(n) = 8*A002378(n) = 4*A046092(n) = 2*A033996(n). - Omar E. Pol, Dec 12 2008
a(n) = a(n-1) + 16*n, with a(0)=0. - Vincenzo Librandi, Nov 17 2010
E.g.f.: 8*exp(x)*x*(2 + x). - Stefano Spezia, May 19 2021
From Amiram Eldar, Feb 22 2023: (Start)
Sum_{n>=1} 1/a(n) = 1/8.
Sum_{n>=1} (-1)^(n+1)/a(n) = (2*log(2) - 1)/8.
Product_{n>=1} (1 - 1/a(n)) = -(8/Pi)*cos(sqrt(3/2)*Pi/2).
Product_{n>=1} (1 + 1/a(n)) = (8/Pi)*cos(Pi/(2*sqrt(2))). (End)

Extensions

More terms from Erich Friedman
Minor errors corrected and edited by Johannes W. Meijer, Feb 04 2010

A002492 Sum of the first n even squares: 2*n*(n+1)*(2*n+1)/3.

Original entry on oeis.org

0, 4, 20, 56, 120, 220, 364, 560, 816, 1140, 1540, 2024, 2600, 3276, 4060, 4960, 5984, 7140, 8436, 9880, 11480, 13244, 15180, 17296, 19600, 22100, 24804, 27720, 30856, 34220, 37820, 41664, 45760, 50116, 54740, 59640, 64824, 70300, 76076, 82160
Offset: 0

Views

Author

Keywords

Comments

Total number of possible bishop moves on an n+1 X n+1 chessboard, if the bishop is placed anywhere. E.g., on a 3 X 3-Board: bishop has 8 X 2 moves and 1 X 4 moves, so a(2)=20. - Ulrich Schimke (ulrschimke(AT)aol.com)
Let M_n denote the n X n matrix M_n(i,j)=(i+j)^2; then the characteristic polynomial of M_n is x^n - a(n)x^(n-1) - .... - Michael Somos, Nov 14 2002
Partial sums of A016742. - Lekraj Beedassy, Jun 19 2004
0,4,20,56,120 gives the number of electrons in closed shells in the double shell periodic system of elements. This is a new interpretation of the periodic system of the elements. The factor 4 in the formula 4*n(n+1)(2n+1)/6 plays a significant role, since it designates the degeneracy of electronic states in this system. Closed shells with more than 120 electrons are not expected to exist. - Karl-Dietrich Neubert (kdn(AT)neubert.net)
Inverse binomial transform of A240434. - Wesley Ivan Hurt, Apr 13 2014
Atomic number of alkaline-earth metals of period 2n. - Natan Arie Consigli, Jul 03 2016
a(n) are the negative cubic coefficients in the expansion of sin(kx) into powers of sin(x) for the odd k: sin(kx) = k sin(x) - c(k) sin^3(x) + O(sin^5(x)); a(n) = c(2n+1) = A000292(2n). - Mathias Zechmeister, Jul 24 2022
Also the number of distinct series-parallel networks under series-parallel reduction on three unlabeled edges of n element kinds. - Michael R. Hayashi, Aug 02 2023

References

  • A. O. Barut, Group Structure of the Periodic System, in Wybourne, Ed., The Structure of Matter, University of Canterbury Press, Christchurch, 1972, p. 126.
  • Edward G. Mazur, Graphic Representation of the Periodic System during One Hundred Years, University of Alabama Press, Alabama, 1974.
  • W. Permans and J. Kemperman, "Nummeringspribleem van S. Dockx, Mathematisch Centrum. Amsterdam," Rapport ZW; 1949-005, 4 leaves, 19.8 X 34 cm.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A033586 (King), A035005 (Queen), A035006 (Rook), A035008 (Knight) and A049450 (Pawn).

Programs

  • Magma
    [2*n*(n+1)*(2*n+1)/3: n in [0..40]]; // Vincenzo Librandi, Jun 16 2011
  • Maple
    A002492:=n->2*n*(n+1)*(2*n+1)/3; seq(A002492(n), n=0..50); # Wesley Ivan Hurt, Apr 04 2014
  • Mathematica
    Table[2n(n+1)(2n+1)/3, {n,0,40}] (* or *) Binomial[2*Range[0,40]+2,3] (* or *) LinearRecurrence[{4,-6,4,-1}, {0,4,20,56},40] (* Harvey P. Dale, Aug 15 2012 *)
    Accumulate[(2*Range[0,40])^2] (* Harvey P. Dale, Jun 04 2019 *)
  • PARI
    a(n)=2*n*(n+1)*(2*n+1)/3
    

Formula

G.f.: 4*x*(1+x)/(1-x)^4. - Simon Plouffe in his 1992 dissertation
a(-1-n) = -a(n).
a(n) = 4*A000330(n) = 2*A006331(n) = A000292(2*n).
a(n) = (-1)^(n+1)*A053120(2*n+1,3) (fourth unsigned column of Chebyshev T-triangle, zeros omitted).
a(n) = binomial(2*n+2, 3). - Lekraj Beedassy, Jun 19 2004
A035005(n+1) = a(n) + A035006(n+1) since Queen = Bishop + Rook. - Johannes W. Meijer, Feb 04 2010
a(n) - a(n-1) = 4*n^2. - Joerg Arndt, Jun 16 2011
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4) for n>3. - Harvey P. Dale, Aug 15 2012
a(n) = Sum_{k=0..3} C(n-2+k,n-2)*C(n+3-k,n), for n>2. - J. M. Bergot, Jun 14 2014
a(n) = 2*A006331(n). - R. J. Mathar, May 28 2016
From Natan Arie Consigli Jul 03 2016: (Start)
a(n) = A166464(n) - 1.
a(n) = A168380(2*n). (End)
a(n) = Sum_{i=0..n} A005408(i)*A005408(i-1)+1 with A005408(-1):=-1. - Bruno Berselli, Jan 09 2017
a(n) = A002412(n) + A016061(n). - Bruce J. Nicholson, Nov 12 2017
From Amiram Eldar, Jan 04 2022: (Start)
Sum_{n>=1} 1/a(n) = 9/2 - 6*log(2).
Sum_{n>=1} (-1)^(n+1)/a(n) = 3*Pi/2 - 9/2. (End)
a(n) = A081277(3, n-1) = (1+2*n)*binomial(n+1, n-2)*2^2/(n-1) for n > 0. - Mathias Zechmeister, Jul 26 2022
E.g.f.: 2*exp(x)*x*(6 + 9*x + 2*x^2)/3. - Stefano Spezia, Jul 31 2022

Extensions

Minor errors corrected and edited by Johannes W. Meijer, Feb 04 2010
Title modified by Charles R Greathouse IV at the suggestion of J. M. Bergot, Apr 05 2014

A033586 a(n) = 4*n*(2*n + 1).

Original entry on oeis.org

0, 12, 40, 84, 144, 220, 312, 420, 544, 684, 840, 1012, 1200, 1404, 1624, 1860, 2112, 2380, 2664, 2964, 3280, 3612, 3960, 4324, 4704, 5100, 5512, 5940, 6384, 6844, 7320, 7812, 8320, 8844, 9384, 9940, 10512, 11100, 11704, 12324, 12960, 13612, 14280
Offset: 0

Views

Author

Keywords

Comments

Number of possible king moves on an (n+1) X (n+1) chessboard. E.g., for a 3 X 3 board: king has 4*5 moves, 4*3 moves and 1*8 moves, so a(2)=40. - Ulrich Schimke (ulrschimke(AT)aol.com)
Sequence found by reading the line from 0, in the direction 0, 12, ..., in the square spiral whose vertices are the triangular numbers A000217. Opposite numbers to the members of A085250 in the same spiral. - Omar E. Pol, Sep 03 2011
Sum of the numbers from 3n to 5n. - Wesley Ivan Hurt, Dec 22 2015
From Emeric Deutsch, Nov 09 2016: (Start)
a(n) is the second Zagreb index of the friendship graph F[n]. The second Zagreb index of a simple connected graph is the sum of the degree products d(i)d(j) over all edges ij of the graph. The friendship graph (or Dutch windmill graph) F[n] can be constructed by joining n copies of the cycle graph C[3] with a common vertex.
For instance, a(2)=40. Indeed, the friendship graph F[2] has 2 edges with end-point degrees 2,2 and 4 edges with end-point degrees 2,4. Then the second Zagreb index is 2*4 + 4*8 = 40. (End)
a(n) is the number of vertices in conjoined n X n dodecagons which are arranged into a square array, a.k.a. 3-4-3-12 tiling. - Donghwi Park, Dec 20 2020

References

  • E. Bonsdorff, K. Fabel and O. Riihimaa, Schach und Zahl (Chess and numbers), Walter Rau Verlag, Dusseldorf, 1966.

Crossrefs

Cf. A035005 (Queen), A035006 (Rook), A035008 (Knight), A002492 (Bishop) and A049450 (Pawn).

Programs

Formula

Binomial transform of [12, 28, 16, 0, 0, 0, ...] = (12, 40, 84, 144, 220, ...). - Gary W. Adamson, Oct 24 2007
a(n) = 4 * A014105(n). - Johannes W. Meijer, Feb 04 2010
a(n) = 16*n + a(n-1) - 4 (with a(0)=0). - Vincenzo Librandi, Aug 05 2010
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3. - Harvey P. Dale, May 10 2011
G.f.: 4*x*(3+x)/(1-3*x+3*x^2-x^3). - Colin Barker, Jan 06 2012
From Wesley Ivan Hurt, Feb 25 2014, Dec 22 2015: (Start)
a(n) = A008586(n) * A005408(n).
a(n) = Sum_{i=3n..5n} i.
a(-n) = A085250(n). (End)
E.g.f.: (8*x^2 + 12*x)*exp(x). - G. C. Greubel, Jul 16 2017
From Vaclav Kotesovec, Dec 21 2020: (Start)
Sum_{n>=1} 1/a(n) = (1 - log(2))/2.
Sum_{n>=1} (-1)^n/a(n) = 1/2 - Pi/8 - log(2)/4. (End)

Extensions

More terms from Erich Friedman
Crossref added, minor errors corrected and edited by Johannes W. Meijer, Feb 04 2010

A035006 Number of possible rook moves on an n X n chessboard.

Original entry on oeis.org

0, 8, 36, 96, 200, 360, 588, 896, 1296, 1800, 2420, 3168, 4056, 5096, 6300, 7680, 9248, 11016, 12996, 15200, 17640, 20328, 23276, 26496, 30000, 33800, 37908, 42336, 47096, 52200, 57660, 63488, 69696, 76296, 83300, 90720, 98568, 106856
Offset: 1

Views

Author

Ulrich Schimke (ulrschimke(AT)aol.com)

Keywords

Comments

Obviously A035005(n) = A002492(n-1) + a(n) since Queen = Bishop + Rook. - Johannes W. Meijer, Feb 04 2010
X values of solutions of the equation: (X-Y)^3-2*X*Y=0. Y values are b(n)=2*n*(n-1)^2 (see A181617). - Mohamed Bouhamida, Jul 06 2023

Examples

			On a 3 X 3-board, rook has 9*4 moves, so a(3)=36.
		

References

  • E. Bonsdorff, K. Fabel and O. Riihimaa, Schach und Zahl (Chess and numbers), Walter Rau Verlag, Dusseldorf, 1966.

Crossrefs

Cf. A033586 (King), A035005 (Queen), A035008 (Knight), A002492 (Bishop) and A049450 (Pawn).

Programs

  • Magma
    [(n-1)*2*n^2: n in [1..40]]; // Vincenzo Librandi, Jun 16 2011
  • Mathematica
    Table[(n-1) 2 n^2,{n,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{0,8,36,96},40] (* Harvey P. Dale, May 12 2012 *)

Formula

a(n) = (n-1)*2*n^2.
a(n) = Sum_{j=1..n} ((n+j-1)^2 - (n-j+1)^2). - Zerinvary Lajos, Sep 13 2006
1/a(n+1) = Integral_{x=1/(n+1)..1/n} x*h(x) = Integral_{x=1/(n+1)..1/n} x*(1/x - floor(1/x)) = 1/((2*(n^2+2*n+1))*n) and Sum_{n>=1} 1/((2*(n^2+2*n+1))*n) = 1-Zeta(2)/2 where h(x) is the Gauss (continued fraction) map h(x)={x^-1} and {x} is the fractional part of x. - Stephen Crowley, Jul 24 2009
a(n) = 4 * A006002(n-1). - Johannes W. Meijer, Feb 04 2010
G.f.: 4*x^2*(2+x)/(1-x)^4. - Colin Barker, Mar 11 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(1)=0, a(2)=8, a(3)=36, a(4)=96. - Harvey P. Dale, May 12 2012
a(n) = A006566(n) - A006564(n). - Peter M. Chema, Feb 10 2016
E.g.f.: 2*exp(x)*x^2*(2 + x). - Stefano Spezia, May 10 2022
From Amiram Eldar, May 14 2022: (Start)
Sum_{n>=2} 1/a(n) = 1 - Pi^2/12.
Sum_{n>=2} (-1)^n/a(n) = Pi^2/24 + log(2) - 1. (End)

A162147 a(n) = n*(n+1)*(5*n + 4)/6.

Original entry on oeis.org

0, 3, 14, 38, 80, 145, 238, 364, 528, 735, 990, 1298, 1664, 2093, 2590, 3160, 3808, 4539, 5358, 6270, 7280, 8393, 9614, 10948, 12400, 13975, 15678, 17514, 19488, 21605, 23870, 26288, 28864, 31603, 34510, 37590, 40848, 44289, 47918, 51740, 55760
Offset: 0

Views

Author

Keywords

Comments

Partial sums of A005475.
Suppose we extend the triangle in A215631 to a symmetric array by reflection about the main diagonal. The array is defined by m(i,j) = i^2 + i*j + j^2: 3, 7, 13, ...; 7, 12, 19, ...; 13, 19, 27, .... Then a(n) is the sum of the n-th antidiagonal. Examples: 3, 7 + 7, 13 + 12 + 13, 21 + 19 + 19 + 21, etc. - J. M. Bergot, Jun 25 2013
Binomial transform of [0,3,8,5,0,0,0,...]. - Alois P. Heinz, Mar 10 2015

Examples

			For n=4, a(4) = 0*(5+0) + 1*(5+1) + 2*(5+2) + 3*(5+3) + 4*(5+4) = 80. - _Bruno Berselli_, Mar 17 2016
		

Crossrefs

Programs

Formula

From R. J. Mathar, Jun 27 2009: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4)
a(n) = A033994(n) + A000217(n).
G.f.: x*(3+2*x)/(1-x)^4. (End)
a(n) = A035005(n+1)/4. - Johannes W. Meijer, Feb 04 2010
a(n) = Sum_{i=0..n} i*(n + 1 + i). - Bruno Berselli, Mar 17 2016
E.g.f.: x*(18 + 24*x + 5*x^2)*exp(x)/6. - G. C. Greubel, Apr 01 2021

Extensions

Definition rephrased by R. J. Mathar, Jun 27 2009

A186965 T(n,k)=Number of n-turn queen's tours on a kXk board summed over all starting positions.

Original entry on oeis.org

1, 4, 0, 9, 12, 0, 16, 56, 24, 0, 25, 152, 296, 24, 0, 36, 320, 1304, 1344, 0, 0, 49, 580, 3808, 10440, 5120, 0, 0, 64, 952, 8832, 43424, 77384, 15760, 0, 0, 81, 1456, 17672, 130592, 473632, 527528, 36816, 0, 0, 100, 2112, 31888, 320880, 1875432, 4927216
Offset: 1

Views

Author

R. H. Hardin Mar 01 2011

Keywords

Comments

Table starts
.1..4.....9.......16.......25.......36......49.......64......81...100..121.144
.0.12....56......152......320......580.....952.....1456....2112..2940.3960
.0.24...296.....1304.....3808.....8832...17672....31888...53312.84040
.0.24..1344....10440....43424...130592..320880...686384.1326848
.0..0..5120....77384...473632..1875432.5706000.14543984
.0..0.15760...527528..4927216.26115816
.0..0.36816..3280384.48781648
.0..0.57904.18430848
.0..0.45856
.0..0

Examples

			Some n=3 solutions for 3X3
..0..3..1....0..1..0....3..0..0....2..1..0....0..0..0....0..0..0....1..0..0
..0..0..2....0..2..0....2..0..0....0..0..0....1..2..0....0..1..3....2..3..0
..0..0..0....0..3..0....1..0..0....3..0..0....0..0..3....0..2..0....0..0..0
		

Crossrefs

Row 2 is A035005

A067875 One player's total legal chess moves by piece type on standard chessboard.

Original entry on oeis.org

668, 1964, 2434, 3248, 5152, 8400
Offset: 1

Views

Author

Rick L. Shepherd, Feb 25 2002

Keywords

Comments

The terms are given in order of increasing numbers of total moves for the six piece types; that is, a(1) Pawn, a(2) Knight, a(3) King, a(4) Bishop, a(5) Rook and a(6) Queen.
The sum of these six terms is 21866, the total number of moves available to White or to Black. Hence 43732 moves, the answer to a question raised in the link below, are available to both players.
Notes: (1) Capturing, for example, a Knight on a particular square counts as a different move from capturing, for example, a Rook on the same square.
(2) Moving a piece to a square without capturing is counted separately from captures by the piece on that square.
(3) The two castling moves are counted as King moves only.
(4) The 14 en passant captures are included in the Pawn moves.
(5) Two-square initial Pawn moves are included.
(6) Pawn promotion on a particular square to a Bishop, for example, counts as a different move from promotion to a Queen on the same square.
(7) Pieces of the same type and color are considered indistinguishable.
(8) Moves causing check, discovered check, double check, checkmate, or stalemate are not distinguished from other moves.
Valid boards and moves require (these two somewhat subtle realizations):
(9) A King cannot capture Pawns on their original squares when they would be attacking the King; this would require the King to have made an illegal move earlier by walking into check.
(10) A King cannot diagonally capture Bishops on their home corner squares - again this would require the King to have made an illegal move earlier. However, a King can diagonally capture Bishops on the other two corners as the Bishop can be in position *after* the King is - via Pawn promotion in this case.

References

  • Inspired by a question posed by Tim Krabbé.

Crossrefs

Cf. A035005 - A035008, A033586 (count the moves per piece type differently).

Formula

a(6) = a(4) + a(5) (Queen moves equal sum of Bishop and Rook moves). Generalizing all terms for n X n chessboards other than 8 x 8 requires defining how many pieces and how many types of pieces are originally on the board and/or can be promoted to, especially because of the way captures are counted.
Showing 1-8 of 8 results.