cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A005475 a(n) = n*(5*n+1)/2.

Original entry on oeis.org

0, 3, 11, 24, 42, 65, 93, 126, 164, 207, 255, 308, 366, 429, 497, 570, 648, 731, 819, 912, 1010, 1113, 1221, 1334, 1452, 1575, 1703, 1836, 1974, 2117, 2265, 2418, 2576, 2739, 2907, 3080, 3258, 3441, 3629
Offset: 0

Views

Author

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 11, ..., and the line from 3, in the direction 3, 24, ..., in the square spiral whose edges have length A195013 and whose vertices are the numbers A195014. - Omar E. Pol, Sep 26 2011
For n >= 3, a(n) is the sum of the numbers appearing in the 3rd row of an n X n square array whose elements are the numbers from 1..n^2, listed in increasing order by rows. - Wesley Ivan Hurt, May 17 2021

Crossrefs

Cf. similar sequences listed in A022289.

Programs

  • Maple
    seq(binomial(5*n+1,2)/5, n=0..34); # Zerinvary Lajos, Jan 21 2007
    a:=n->sum(2*n+j, j=1..n): seq(a(n), n=0..38); # Zerinvary Lajos, Apr 29 2007
  • Mathematica
    Table[n (5 n + 1)/2, {n, 0, 40}] (* Bruno Berselli, Oct 13 2016 *)
  • PARI
    a(n)=n*(5*n+1)/2; \\ Joerg Arndt, Mar 27 2013

Formula

a(n) = A110449(n, 2) for n>1.
a(n) = a(n-1) + 5*n - 2 for n>0, a(0)=0. - Vincenzo Librandi, Nov 18 2010
a(n) = A130520(5*n+2). - Philippe Deléham, Mar 26 2013
a(n) = A202803(n)/2. - Philippe Deléham, Mar 27 2013
a(n) = A162147(n) - A162147(n-1). - J. M. Bergot, Jun 21 2013
a(n) = A000217(3*n) - A000217(2*n). - Bruno Berselli, Oct 13 2016
From G. C. Greubel, Aug 23 2017: (Start)
G.f.: x*(2*x + 3)/(1-x)^3.
E.g.f.: (x/2)*(5*x+6)*exp(x). (End)
Sum_{n>=1} 1/a(n) = 10+2*gamma+2*Psi(1/5) = 0.57635... see A001620 and A200135. - R. J. Mathar, May 30 2022
Sum_{n>=1} 1/a(n) = 10 - sqrt(1+2/sqrt(5))*Pi - sqrt(5)*log(phi) - 5*log(5)/2, where phi is the golden ratio (A001622). - Amiram Eldar, Sep 10 2022

Extensions

Incorrect comment deleted and minor errors corrected by Johannes W. Meijer, Feb 04 2010

A075196 Table T(n,k) by antidiagonals: T(n,k) = number of partitions of n balls of k colors.

Original entry on oeis.org

1, 2, 2, 3, 6, 3, 4, 12, 14, 5, 5, 20, 38, 33, 7, 6, 30, 80, 117, 70, 11, 7, 42, 145, 305, 330, 149, 15, 8, 56, 238, 660, 1072, 906, 298, 22, 9, 72, 364, 1260, 2777, 3622, 2367, 591, 30, 10, 90, 528, 2198, 6174, 11160, 11676, 6027, 1132, 42, 11, 110, 735, 3582, 12292, 28784, 42805, 36450, 14873, 2139, 56
Offset: 1

Views

Author

Christian G. Bower, Sep 07 2002

Keywords

Comments

For k>=1, n->infinity is log(T(n,k)) ~ (1+1/k) * k^(1/(k+1)) * Zeta(k+1)^(1/(k+1)) * n^(k/(k+1)). - Vaclav Kotesovec, Mar 08 2015

Examples

			Square array T(n,k) begins:
  1,  2,   3,    4,    5, ...
  2,  6,  12,   20,   30, ...
  3, 14,  38,   80,  145, ...
  5, 33, 117,  305,  660, ...
  7, 70, 330, 1072, 2777, ...
		

Crossrefs

Rows 1-3: A000027, A002378, A162147.
Main diagonal: A075197.
Cf. A255903.

Programs

  • Maple
    with(numtheory):
    A:= proc(n, k) option remember; local d, j;
          `if`(n=0, 1, add(add(d*binomial(d+k-1, k-1),
           d=divisors(j)) *A(n-j, k), j=1..n)/n)
        end:
    seq(seq(A(n, 1+d-n), n=1..d), d=1..12);  # Alois P. Heinz, Sep 26 2012
  • Mathematica
    Transpose[Table[nn=6;p=Product[1/(1- x^i)^Binomial[i+n,n],{i,1,nn}];Drop[CoefficientList[Series[p,{x,0,nn}],x],1],{n,0,nn}]]//Grid  (* Geoffrey Critzer, Sep 27 2012 *)

Formula

T(n,k) = Sum_{i=0..k} C(k,i) * A255903(n,i). - Alois P. Heinz, Mar 10 2015

A035005 Number of possible queen moves on an n X n chessboard.

Original entry on oeis.org

0, 12, 56, 152, 320, 580, 952, 1456, 2112, 2940, 3960, 5192, 6656, 8372, 10360, 12640, 15232, 18156, 21432, 25080, 29120, 33572, 38456, 43792, 49600, 55900, 62712, 70056, 77952, 86420, 95480, 105152, 115456, 126412, 138040, 150360
Offset: 1

Views

Author

Ulrich Schimke (ulrschimke(AT)aol.com)

Keywords

Comments

The number of (2 to n) digit sequences that can be found reading in any orientation, including diagonals, in an (n X n) grid. - Paul Cleary, Aug 12 2005

Examples

			3 X 3 board: queen has 8*6 moves and 1*8 moves, so a(3)=56.
		

Crossrefs

Cf. A033586 (King), A035006 (Rook), A035008 (Knight), A002492 (Bishop) and A049450 (Pawn).
Cf. A162147.

Programs

  • Magma
    [(n-1)*2*n^2 + (4*n^3-6*n^2+2*n)/3: n in [1..40]]; // Vincenzo Librandi, Jun 16 2011
  • Mathematica
    Table[(n-1)2n^2+(4n^3-6n^2+2n)/3,{n,40}] (* or *) LinearRecurrence[ {4,-6,4,-1},{0,12,56,152},40] (* Harvey P. Dale, Aug 24 2011 *)

Formula

a(n) = (n-1)*2*n^2 + (4*n^3-6*n^2+2*n)/3.
From Johannes W. Meijer, Feb 04 2010: (Start)
a(n) = A002492(n-1) + A035006(n) since Queen = Bishop + Rook.
a(n) = 4 * A162147(n-1). (End)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(0)=0, a(1)=12, a(2)=56, a(3)=152. - Harvey P. Dale, Aug 24 2011
From Colin Barker, Mar 11 2012: (Start)
a(n) = 2*n*(1-6*n+5*n^2)/3.
G.f.: 4*x^2*(3+2*x)/(1-x)^4. (End)
E.g.f.: 2*exp(x)*x^2*(9 + 5*x)/3. - Stefano Spezia, Jul 31 2022

Extensions

More terms from Erich Friedman

A162148 a(n) = n*(n+1)*(5*n+7)/6.

Original entry on oeis.org

0, 4, 17, 44, 90, 160, 259, 392, 564, 780, 1045, 1364, 1742, 2184, 2695, 3280, 3944, 4692, 5529, 6460, 7490, 8624, 9867, 11224, 12700, 14300, 16029, 17892, 19894, 22040, 24335, 26784, 29392, 32164, 35105, 38220, 41514, 44992, 48659, 52520, 56580
Offset: 0

Views

Author

Keywords

Comments

Partial sums of A147875.
Equals the fourth right hand column of A175136 for n>=1. - Johannes W. Meijer, May 06 2011
a(n) is the number of triples (w,x,y) havingt all terms in {0,...,n} and x+y>w. - Clark Kimberling, Jun 14 2012

Crossrefs

Programs

Formula

a(n) = A162147(n) + A000217(n).
From Johannes W. Meijer, May 06 2011: (Start)
G.f.: x*(4+x)/(1-x)^4.
a(n) = 4*binomial(n+2,3) + binomial(n+1,3).
a(n) = A091894(3,0)*binomial(n+2,3) + A091894(3,1)*binomial(n+1,3). (End)
a(n) = (n+1)*A000290(n+1) - Sum_{i=1..n+1} A000217(i).
a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4), a(0)=0, a(1)=4, a(2)=17, a(3)=44. - Harvey P. Dale, May 20 2014
E.g.f.: x*(24 +27*x +5*x^2)*exp(x)/6. - G. C. Greubel, Mar 31 2021

Extensions

Definition rephrased by R. J. Mathar, Jun 27 2009

A185909 Accumulation array of A185908, by antidiagonals.

Original entry on oeis.org

1, 2, 3, 3, 7, 6, 4, 11, 14, 10, 5, 15, 23, 23, 15, 6, 19, 32, 38, 34, 21, 7, 23, 41, 54, 56, 47, 28, 8, 27, 50, 70, 80, 77, 62, 36, 9, 31, 59, 86, 105, 110, 101, 79, 45, 10, 35, 68, 102, 130, 145, 144, 128, 98, 55, 11, 39, 77, 118, 155, 181, 190, 182, 158, 119, 66, 12, 43, 86, 134, 180, 217, 238, 240, 224, 191, 142, 78, 13, 47, 95, 150, 205, 253, 287, 301, 295, 270, 227, 167, 91, 14, 51, 104, 166, 230, 289, 336, 364, 370, 355, 320, 266, 194, 105, 15, 55, 113, 182, 255
Offset: 1

Views

Author

Clark Kimberling, Feb 06 2011

Keywords

Comments

A member of the accumulation chain ... < A185907 < A185908 < A185909 < ...
(See A144112 for definitions of weight array and accumulation array.)

Examples

			Northwest corner:
   1,  2,  3,  4,  5
   3,  7, 11, 15, 19
   6, 14, 23, 32, 41
  10, 23, 38, 54, 70
		

Crossrefs

diag (1,7,...): A004068.
diag (2,11,...): A033994.
diag (3,14,...): A162147.

Programs

  • Mathematica
    f[n_, 0] := 0; f[0, k_] := 0; (*needed for the weight array*)
    f[n_, k_] := Min[n, k] + n - 1;
    s[n_, k_] := Sum[f[i, j], {i, 1, n}, {j, 1, k}];
    Table[s[n - k + 1, k], {n, 10}, {k, n, 1, -1}] // Flatten

A212415 Number of (w,x,y,z) with all terms in {1,...,n} and w=y<=z.

Original entry on oeis.org

0, 0, 3, 17, 55, 135, 280, 518, 882, 1410, 2145, 3135, 4433, 6097, 8190, 10780, 13940, 17748, 22287, 27645, 33915, 41195, 49588, 59202, 70150, 82550, 96525, 112203, 129717, 149205, 170810, 194680, 220968, 249832, 281435, 315945
Offset: 0

Views

Author

Clark Kimberling, May 19 2012

Keywords

Comments

For a guide to related sequences, see A211795.
Partial sums of A162147. - J. M. Bergot, Jun 21 2013

Examples

			a(3) counts these (w,x,y,z): (1,2,2,2), (1,2,2,3), (1,3,3,3).
		

Crossrefs

Cf. A211795.

Programs

  • GAP
    List([0..40], n-> n*(5*n+2)*(n^2-1)/24); # G. C. Greubel, Jul 11 2019
  • Magma
    [n*(5*n+2)*(n^2-1)/24: n in [0..40]]; // G. C. Greubel, Jul 11 2019
    
  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[w < x >= y <= z, s = s + 1],
    {w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
    Map[t[#] &, Range[0, 40]]   (* A212415 *)
    Table[n*(5*n+2)*(n^2-1)/4!, {n,0,40}] (* G. C. Greubel, Jul 11 2019 *)
  • PARI
    vector(40, n, n--; n*(5*n+2)*(n^2-1)/4!) \\ G. C. Greubel, Jul 11 2019
    
  • Sage
    [n*(5*n+2)*(n^2-1)/24 for n in (0..40)] # G. C. Greubel, Jul 11 2019
    

Formula

a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
From Bruno Berselli, May 30 2012: (Start)
G.f.: x^2*(3+2*x)/(1-x)^5.
a(n) = (n-1)*n*(n+1)*(5*n+2)/24. (End)
E.g.f.: x^2*(36 + 32*x + 5*x^2)*exp(x)/24. - G. C. Greubel, Jul 11 2019

A256497 Triangle read by rows, sums of 2 distinct nonzero cubes: T(n,k) = (n+1)^3+k^3, 1 <= k <= n.

Original entry on oeis.org

9, 28, 35, 65, 72, 91, 126, 133, 152, 189, 217, 224, 243, 280, 341, 344, 351, 370, 407, 468, 559, 513, 520, 539, 576, 637, 728, 855, 730, 737, 756, 793, 854, 945, 1072, 1241, 1001, 1008, 1027, 1064, 1125, 1216, 1343, 1512, 1729
Offset: 1

Views

Author

Bob Selcoe, Mar 31 2015

Keywords

Comments

When n=k: T(n,k) = (2n+1)(n^2+n+1). Therefore, T(n,k)/(2n+1) = A002061(n+1).
A002383 is the sequence of all primes of the form T(n,k)/(2n+1), n=k.
When starting at T(n,k) n=k, diagonal sums are n^2*(2n+1)^2. For example, starting at T(4,4) = 189: 189+243+351+513 = 4^2*9^2 = 1296.
Coefficients in T(n,k) are multiples of n+k+1; therefore, coefficients in all diagonals starting at T(n,1) are multiples of n+2.
Let T"(n,k) = T(n,k)/(n+k+1). Then reading T"(n,k) by rows:
i. Row sums are A162147(n). For example, T"(3,k) = [65/5, 72/6, 91/7] = [13,12,13]. 13+12+13 = 38; A162147(3) = 38.
ii. Extend the triangle in A215631 to a symmetric array by reflection about the main diagonal, and let that array be T"215631(n,k). Then the diagonal starting with T"215631(n,1) is row n in T"(n,k). For example, the diagonal starting at T"215631(4,1) = [21,19,19,21]; T"(4,k) = [126/6, 133/7, 152/8, 189/9] = [21,19,19,21].
iii. Coefficients in T"(n,k) are a permutation of A024612.

Examples

			Triangle starts:
n\k   1    2    3    4    5    6    7     8    9   10 ...
1:    9
2:    28  35
3:    65  72   91
4:   126  133  152  189
5:   217  224  243  280  341
6:   344  351  370  407  468  559
7:   513  520  539  576  637  728  855
8:   730  737  756  793  854  945  1072 1241
9:   1001 1008 1027 1064 1125 1216 1343 1512 1729
10:  1332 1339 1358 1395 1456 1547 1674 1843 2060 2331
...
The successive terms are (2^3+1^3), (3^3+1^3), (3^3+2^3), (4^3+1^3), (4^3+2^3), (4^3+3^3), ...
		

Crossrefs

Formula

T(n,k) = (n+1)^3+k^3.
T(n,k) = (2k+1)(k^2+k+1) + Sum_{j=k+1..n} A003215(j), n>=k+1. For example, T(8,4) = 9*21 + 91 + 127 + 169 + 217 = 793.
Showing 1-7 of 7 results.