cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 21 results. Next

A210977 A005475 and positive terms of A000566 interleaved.

Original entry on oeis.org

0, 1, 3, 7, 11, 18, 24, 34, 42, 55, 65, 81, 93, 112, 126, 148, 164, 189, 207, 235, 255, 286, 308, 342, 366, 403, 429, 469, 497, 540, 570, 616, 648, 697, 731, 783, 819, 874, 912, 970, 1010, 1071, 1113, 1177, 1221, 1288, 1334, 1404, 1452, 1525, 1575, 1651, 1703, 1782, 1836, 1918, 1974, 2059
Offset: 0

Views

Author

Omar E. Pol, Aug 03 2012

Keywords

Comments

Vertex number of a square spiral similar to A085787.
Partial sums of the sequence formed by A005843 and A016777 interleaved.

Crossrefs

Members of this family are A093005, this sequence, A006578, A210978, A181995, A210981, A210982.

Formula

G.f.: -x*(1+2*x+2*x^2) / ( (1+x)^2*(x-1)^3 ). - R. J. Mathar, Aug 07 2012
a(n) = (10*n^2+6*n-1-(2*n-1)*(-1)^n)/16. - Luce ETIENNE, Oct 04 2014

A183297 Complement of A005475.

Original entry on oeis.org

1, 2, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85
Offset: 1

Views

Author

Clark Kimberling, Jan 03 2011

Keywords

Programs

  • Mathematica
      a=5/2; b=1/2;
    F[n_]:=a*n^2+b*n;
    R[n_]:=(n/a+((b-1)/(2a))^2)^(1/2);
    G[n_]:=n-1+Ceiling[R[n]-(b-1)/(2a)];
    Table[F[n], {n,60}]
    Table[G[n], {n,100}]

Formula

(See the Mathematic code.)

A028895 5 times triangular numbers: a(n) = 5*n*(n+1)/2.

Original entry on oeis.org

0, 5, 15, 30, 50, 75, 105, 140, 180, 225, 275, 330, 390, 455, 525, 600, 680, 765, 855, 950, 1050, 1155, 1265, 1380, 1500, 1625, 1755, 1890, 2030, 2175, 2325, 2480, 2640, 2805, 2975, 3150, 3330, 3515, 3705, 3900, 4100, 4305, 4515, 4730, 4950, 5175, 5405, 5640
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org), Dec 11 1999

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 5, ... and the same line from 0, in the direction 0, 15, ..., in the square spiral whose vertices are the generalized heptagonal numbers A085787. Axis perpendicular to A195142 in the same spiral. - Omar E. Pol, Sep 18 2011
Bisection of A195014. Sequence found by reading the line from 0, in the direction 0, 5, ..., and the same line from 0, in the direction 0, 15, ..., in the square spiral whose edges have length A195013 and whose vertices are the numbers A195014. This is the main diagonal of the spiral. - Omar E. Pol, Sep 25 2011
a(n) = the Wiener index of the graph obtained by applying Mycielski's construction to the complete graph K(n) (n>=2). - Emeric Deutsch, Aug 29 2013
Sum of the numbers from 2*n to 3*n for n=0,1,2,... - Wesley Ivan Hurt, Nov 27 2015
Numbers k such that the concatenation k625 is a square, where also 625 is a square. - Bruno Berselli, Nov 07 2018
From Paul Curtz, Nov 29 2019: (Start)
Main column of the pentagonal spiral for n (A001477):
50
49 30 31
48 29 15 16 32
47 28 14 5 6 17 33
46 27 13 4 0 1 7 18 34
45 26 12 3 2 8 19 35
44 25 11 10 9 20 36
43 24 23 22 21 37
42 41 40 39 38
(End)

References

  • D. B. West, Introduction to Graph Theory, 2nd ed., Prentice-Hall, NJ, 2001, p. 205.

Crossrefs

Cf. index to numbers of the form n*(d*n+10-d)/2 in A140090.
Cf. A000566, A005475, A005476, A033583, A085787, A147875, A192136, A326725 (all in the spiral).

Programs

Formula

G.f.: 5*x/(1-x)^3.
a(n) = 5*n*(n+1)/2 = 5*A000217(n).
a(n+1) = 5*n+a(n). - Vincenzo Librandi, Aug 05 2010
a(n) = A005891(n) - 1. - Omar E. Pol, Oct 03 2011
a(n) = A130520(5n+4). - Philippe Deléham, Mar 26 2013
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. - Wesley Ivan Hurt, Nov 27 2015
a(n) = Sum_{i=0..n} A001068(4i). - Wesley Ivan Hurt, May 06 2016
E.g.f.: 5*x*(2 + x)*exp(x)/2. - Ilya Gutkovskiy, May 06 2016
a(n) = A055998(3*n) - A055998(2*n). - Bruno Berselli, Sep 23 2016
From Amiram Eldar, Feb 26 2022: (Start)
Sum_{n>=1} 1/a(n) = 2/5.
Sum_{n>=1} (-1)^(n+1)/a(n) = (2/5)*(2*log(2) - 1). (End)
Product_{n>=1} (1 - 1/a(n)) = -(5/(2*Pi))*cos(sqrt(13/5)*Pi/2). - Amiram Eldar, Feb 21 2023

A005476 a(n) = n*(5*n - 1)/2.

Original entry on oeis.org

0, 2, 9, 21, 38, 60, 87, 119, 156, 198, 245, 297, 354, 416, 483, 555, 632, 714, 801, 893, 990, 1092, 1199, 1311, 1428, 1550, 1677, 1809, 1946, 2088, 2235, 2387, 2544, 2706, 2873, 3045, 3222, 3404, 3591
Offset: 0

Views

Author

Keywords

Comments

a(n) is half the number of ways to divide an n X n square into 3 rectangles whose side-lengths are integers. See Matthew Scroggs link. - George Witty, Feb 06 2024

Crossrefs

Cf. numbers of the form n*(n*k-k+4)/2 listed in A226488.
Cf. similar sequences listed in A022288.

Programs

Formula

a(n) = C(5*n,2)/5 for n>=0. - Zerinvary Lajos, Jan 02 2007
a(n) = A033991(n) - A000326(n). - Zerinvary Lajos, Jun 11 2007
a(n) = a(n-1) + 5*n - 3 for n>0, a(0)=0. - Vincenzo Librandi, Nov 18 2010
a(n) = A000217(n) + A000384(n) = A000290(n) + A000326(n). - Omar E. Pol, Jan 11 2013
a(n) = A130520(5*n+1). - Philippe Deléham, Mar 26 2013
a(n) = A033994(n) - A033994(n-1). - J. M. Bergot, Jun 12 2013
From Bruno Berselli, Oct 17 2016: (Start)
G.f.: x*(2 + 3*x)/(1 - x)^3.
a(n) = A000217(3*n-1) - A000217(2*n-1). (End)
E.g.f.: x*(4 + 5*x)*exp(x)/2. - G. C. Greubel, Jul 30 2019
Sum_{n>=1} 1/a(n) = 2 * A294833. - Amiram Eldar, Nov 16 2020
From Leo Tavares, Nov 20 2021: (Start)
a(n) = A016754(n) - A133694(n+1). See Triangulated Diamonds illustration.
a(n) = A000290(n) + A000217(n) + 2*A000217(n-1)
a(n) = 2*A000217(n) + 3*A000217(n-1). (End)

A130520 a(n) = Sum_{k=0..n} floor(k/5). (Partial sums of A002266.)

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 7, 9, 11, 13, 15, 18, 21, 24, 27, 30, 34, 38, 42, 46, 50, 55, 60, 65, 70, 75, 81, 87, 93, 99, 105, 112, 119, 126, 133, 140, 148, 156, 164, 172, 180, 189, 198, 207, 216, 225, 235, 245, 255, 265, 275, 286, 297, 308, 319, 330, 342, 354, 366
Offset: 0

Views

Author

Hieronymus Fischer, Jun 01 2007

Keywords

Comments

Complementary with A130483 regarding triangular numbers, in that A130483(n) + 5*a(n) = n*(n+1)/2 = A000217(n).
Given a sequence b(n) defined by variables b(0) to b(5) and recursion b(n) = -(b(n-6) * a(n-2) * (b(n-4) * b(n-2)^3 - b(n-3)^3 * b(n-1)) - b(n-5) * b(n-3) * b(n-1) * (b(n-5) * b(n-2)^2 - b(n-4)^2 * b(n-1)))/(b(n-4) * (b(n-5) * b(n-3)^3 - b(n-4)^3 * b(n-2))). The denominator of b(n+1) has a factor of (b(1) * b(3)^3 - b(2)^3 * b(4))^a(n+1). For example, if b(0) = 2, b(1) = b(2) = b(3) = 1, b(4) = 1+x, b(5) = 4, then the denominator of b(n+1) is x^a(n+1). - Michael Somos, Nov 15 2023

Crossrefs

Programs

  • GAP
    List([0..70], n-> Int((n-1)*(n-2)/10)); # G. C. Greubel, Aug 31 2019
  • Magma
    [Round(n*(n-3)/10): n in [0..70]]; // Vincenzo Librandi, Jun 25 2011
    
  • Maple
    seq(floor((n-1)*(n-2)/10), n=0..70); # G. C. Greubel, Aug 31 2019
  • Mathematica
    Accumulate[Floor[Range[0,70]/5]] (* Harvey P. Dale, May 25 2016 *)
  • PARI
    a(n) = sum(k=0, n, k\5); \\ Michel Marcus, May 13 2016
    
  • Sage
    [floor((n-1)*(n-2)/10) for n in (0..70)] # G. C. Greubel, Aug 31 2019
    

Formula

a(n) = floor(n/5)*(2*n - 3 - 5*floor(n/5))/2.
a(n) = A002266(n)*(2*n - 3 - 5*A002266(n))/2.
a(n) = A002266(n)*(n -3 +A010874(n))/2.
G.f.: x^5/((1-x^5)*(1-x)^2) = x^5/( (1+x+x^2+x^3+x^4)*(1-x)^3 ).
a(n) = floor((n-1)*(n-2)/10). - Mitch Harris, Sep 08 2008
a(n) = round(n*(n-3)/10) = ceiling((n+1)*(n-4)/10) = round((n^2 - 3*n - 1)/10). - Mircea Merca, Nov 28 2010
a(n) = A008732(n-5), n > 4. - R. J. Mathar, Nov 22 2008
a(n) = a(n-5) + n - 4, n > 4. - Mircea Merca, Nov 28 2010
a(5n) = A000566(n), a(5n+1) = A005476(n), a(5n+2) = A005475(n), a(5n+3) = A147875(n), a(5n+4) = A028895(n). - Philippe Deléham, Mar 26 2013
From Amiram Eldar, Sep 17 2022: (Start)
Sum_{n>=5} 1/a(n) = 518/45 - 2*sqrt(2*(sqrt(5)+5))*Pi/3.
Sum_{n>=5} (-1)^(n+1)/a(n) = 8*sqrt(5)*arccoth(3/sqrt(5))/3 + 92*log(2)/15 - 418/45. (End)

A057569 Numbers of the form k*(5*k+1)/2 or k*(5*k-1)/2.

Original entry on oeis.org

0, 2, 3, 9, 11, 21, 24, 38, 42, 60, 65, 87, 93, 119, 126, 156, 164, 198, 207, 245, 255, 297, 308, 354, 366, 416, 429, 483, 497, 555, 570, 632, 648, 714, 731, 801, 819, 893, 912, 990, 1010, 1092, 1113, 1199, 1221, 1311, 1334, 1428, 1452, 1550
Offset: 1

Views

Author

N. J. A. Sloane, Oct 04 2000

Keywords

Comments

a(n) is the set of all m such that 40*m+1 is a perfect square. - Gary Detlefs, Feb 22 2010
Integers of the form (n^2 - n) / 10. Numbers of the form n * (5*n - 1) / 2 where n is an integer. - Michael Somos, Jan 13 2012
Also integers of the form sum_{k=1..n} k/5. - Alonso del Arte, Jan 20 2012
These numbers appear in a theta function identity. See the Hardy-Wright reference, Theorem 356 on p. 284. See the G.f. of A113428. - Wolfdieter Lang, Oct 28 2016

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth ed., Clarendon Press, Oxford, 2003, p. 284.

Crossrefs

Programs

  • Magma
    [(10*(n^2-n)+12*(-1)^n*(n div 2))/16: n in [1..60]]; // Vincenzo Librandi, Oct 29 2016
  • Mathematica
    Select[Table[Plus@@Range[n]/5, {n, 0, 199}], IntegerQ] (* Alonso del Arte, Jan 20 2012 *)
    LinearRecurrence[{1,2,-2,-1,1},{0,2,3,9,11},50] (* Harvey P. Dale, Jul 05 2021 *)
  • PARI
    {a(n) = (10 * (n^2 - n) + 12 * (-1)^n * (n\2)) / 16}; \\ Michael Somos, Jan 13 2012
    
  • PARI
    Vec(x^2*(2*x^2+x+2) / ((1-x)^3*(1+x)^2) + O(x^60)) \\ Colin Barker, Jun 13 2017
    

Formula

A005475 UNION A005476. G.f.: x^2*(2x^2+x+2)/((1-x)^3*(1+x)^2). a(n) = A132356(n+1)/4. - R. J. Mathar, Apr 07 2008
a(n) = (A090771(n)^2 -1)/40. - Gary Detlefs, Feb 22 2010
|A113428(n)| is the characteristic function of the numbers a(n).
a(n) = a(1 - n) for all n in Z. - Michael Somos, Jan 13 2012
From Colin Barker, Jun 13 2017: (Start)
a(n) = n*(5*n - 2)/8 for n even.
a(n) = (5*n - 3)*(n - 1)/8 for n odd.
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>5.
(End)
From Amiram Eldar, Mar 17 2022: (Start)
Sum_{n>=2} 1/a(n) = 10 - 2*sqrt(1+2/sqrt(5))*Pi.
Sum_{n>=2} (-1)^n/a(n) = 2*sqrt(5)*log(phi) - 5*(2-log(5)), where phi is the golden ratio (A001622). (End)

A022289 a(n) = n*(31*n + 1)/2.

Original entry on oeis.org

0, 16, 63, 141, 250, 390, 561, 763, 996, 1260, 1555, 1881, 2238, 2626, 3045, 3495, 3976, 4488, 5031, 5605, 6210, 6846, 7513, 8211, 8940, 9700, 10491, 11313, 12166, 13050, 13965, 14911, 15888, 16896, 17935
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. similar sequences of the form n*((2*k+1)*n + 1)/2: A000217 (k=0), A005449 (k=1), A005475 (k=2), A022265 (k=3), A022267 (k=4), A022269 (k=5), A022271 (k=6), A022273 (k=7), A022275 (k=8), A022277 (k=9), A022279 (k=10), A022281 (k=11), A022283 (k=12), A022285 (k=13), A022287 (k=14), this sequence (k=15).

Programs

Formula

a(n) = 31*n + a(n-1) - 15, for n>0, a(0)=0. - Vincenzo Librandi, Aug 04 2010
G.f.: x*(16 + 15*x)/(1 - x)^3 . - R. J. Mathar, Sep 02 2016
a(n) = A000217(16*n) - A000217(15*n). In general, n*((2*k+1)*n + 1)/2 = A000217((k+1)*n) - A000217(k*n). - Bruno Berselli, Oct 13 2016
E.g.f.: (x/2)*(31*x + 32)*exp(x). - G. C. Greubel, Aug 23 2017

A022265 a(n) = n*(7*n + 1)/2.

Original entry on oeis.org

0, 4, 15, 33, 58, 90, 129, 175, 228, 288, 355, 429, 510, 598, 693, 795, 904, 1020, 1143, 1273, 1410, 1554, 1705, 1863, 2028, 2200, 2379, 2565, 2758, 2958, 3165, 3379, 3600, 3828, 4063, 4305, 4554, 4810
Offset: 0

Views

Author

Keywords

Comments

For n >= 4, a(n) is the sum of the numbers appearing in the 4th row of an n X n square array whose elements are the numbers from 1..n^2, listed in increasing order by rows. - Wesley Ivan Hurt, May 17 2021

Examples

			From _Bruno Berselli_, Oct 27 2017: (Start)
After 0:
4  =       -(1)       +             (2 + 3).
15 =     -(1 + 2)     +         (3 + 4 + 5 + 6).
33 =   -(1 + 2 + 3)   +     (4 + 5 + 6 + 7 + 8 + 9).
58 = -(1 + 2 + 3 + 4) + (5 + 6 + 7 + 8 + 9 + 10 + 11 + 12). (End)
		

Crossrefs

Cf. similar sequences listed in A022289.

Programs

Formula

a(n) = A110449(n, 3) for n>2.
a(n) = A049453(n) - A005475(n). - Zerinvary Lajos, Jan 21 2007
a(n) = 7*n + a(n-1) - 3 for n>0, a(0)=0. - Vincenzo Librandi, Aug 04 2010
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) with a(0)=0, a(1)=4, a(2)=15. - Philippe Deléham, Mar 26 2013
a(n) = A174738(7n+3). - Philippe Deléham, Mar 26 2013
a(n) = A000217(4*n) - A000217(3*n). - Bruno Berselli, Oct 13 2016
G.f.: x*(4 + 3*x)/(1 - x)^3. - Ilya Gutkovskiy, Oct 13 2016
E.g.f.: (x/2)*(7*x + 8)*exp(x). - G. C. Greubel, Aug 23 2017
a(n) = A000217(n) + 3*A000290(n). - Leo Tavares, Mar 15 2025

A110449 Triangle read by rows: T(n,k) = n*((2*k+1)*n+1)/2, 0<=k<=n.

Original entry on oeis.org

0, 1, 2, 3, 7, 11, 6, 15, 24, 33, 10, 26, 42, 58, 74, 15, 40, 65, 90, 115, 140, 21, 57, 93, 129, 165, 201, 237, 28, 77, 126, 175, 224, 273, 322, 371, 36, 100, 164, 228, 292, 356, 420, 484, 548, 45, 126, 207, 288, 369, 450, 531, 612, 693, 774, 55, 155, 255, 355, 455, 555, 655, 755, 855, 955, 1055
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 21 2005

Keywords

Comments

Row sums give A110450; central terms give A110451;
T(n,0) = A000217(n);
T(n,1) = A005449(n) for n>0;
T(n,2) = A005475(n) for n>1;
T(n,3) = A022265(n) for n>2;
T(n,4) = A022267(n) for n>3;
T(n,5) = A022269(n) for n>4;
T(n,6) = A022271(n) for n>5;
T(n,7) = A022263(n) for n>6;
T(n+1,n-1) = A059270(n) for n>1;
T(n,n-1) = A081436(n) for n>1;
T(n,n) = A085786(n).

Examples

			Triangle starts:
0;
1, 2;
3, 7, 11;
6, 15, 24, 33;
10, 26, 42, 58, 74;
...
		

Crossrefs

Cf. A126890.

Programs

  • Mathematica
    Table[n*((2*k + 1)*n + 1)/2, {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Aug 23 2017 *)
  • PARI
    tabl(nn) = {for (n=0, nn, for (k=0, n, print1(n*((2*k+1)*n+1)/2, ", ");); print(););} \\ Michel Marcus, Jun 22 2015

Formula

T(n,k) = n*((2*k + 1)*n + 1)/2, 0 <= k <= n.

A226492 a(n) = n*(11*n-5)/2.

Original entry on oeis.org

0, 3, 17, 42, 78, 125, 183, 252, 332, 423, 525, 638, 762, 897, 1043, 1200, 1368, 1547, 1737, 1938, 2150, 2373, 2607, 2852, 3108, 3375, 3653, 3942, 4242, 4553, 4875, 5208, 5552, 5907, 6273, 6650, 7038, 7437, 7847, 8268, 8700, 9143, 9597, 10062, 10538, 11025, 11523
Offset: 0

Views

Author

Bruno Berselli, Jun 11 2013

Keywords

Comments

Sequences of numbers of the form n*(n*k - k + 6)/2:
. k from 0 to 10, respectively: A008585, A055998, A005563, A045943, A014105, A005475, A033428, A022264, A033991, A062741, A147874;
. k=11: a(n);
. k=12: A094159;
. k=13: 0, 3, 19, 48, 90, 145, 213, 294, 388, 495, 615, 748, 894, ...;
. k=14: 0, 3, 20, 51, 96, 155, 228, 315, 416, 531, 660, 803, 960, ...;
. k=15: A152773;
. k=16: A139272;
. k=17: 0, 3, 23, 60, 114, 185, 273, 378, 500, 639, 795, 968, ...;
. k=18: A152751;
. k=19: 0, 3, 25, 66, 126, 205, 303, 420, 556, 711, 885, 1078, ...;
. k=20: 0, 3, 26, 69, 132, 215, 318, 441, 584, 747, 930, 1133, ...;
. k=21: A152759;
. k=22: 0, 3, 28, 75, 144, 235, 348, 483, 640, 819, 1020, 1243, ...;
. k=23: 0, 3, 29, 78, 150, 245, 363, 504, 668, 855, 1065, 1298, ...;
. k=24: A152767;
. k=25: 0, 3, 31, 84, 162, 265, 393, 546, 724, 927, 1155, 1408, ...;
. k=26: 0, 3, 32, 87, 168, 275, 408, 567, 752, 963, 1200, 1463, ...;
. k=27: A153783;
. k=28: A195021;
. k=29: 0, 3, 35, 96, 186, 305, 453, 630, 836, 1071, 1335, 1628, ...;
. k=30: A153448;
. k=31: 0, 3, 37, 102, 198, 325, 483, 672, 892, 1143, 1425, 1738, ...;
. k=32: 0, 3, 38, 105, 204, 335, 498, 693, 920, 1179, 1470, 1793, ...;
. k=33: A153875.
Also:
a(n) - n = A180223(n);
a(n) + n = n*(11*n-3)/2 = 0, 4, 19, 45, 82, 130, 189, 259, ...;
a(n) - 2*n = A051865(n);
a(n) + 2*n = A022268(n);
a(n) - 3*n = A152740(n-1);
a(n) + 3*n = A022269(n);
a(n) - 4*n = n*(11*n-13)/2 = 0, -1, 9, 30, 62, 105, 159, 224, ...;
a(n) + 4*n = A254963(n);
a(n) - n*(n-1)/2 = A147874(n+1);
a(n) + n*(n-1)/2 = A094159(n) (case k=12);
a(n) - n*(n-1) = A062741(n) (see above, this is the case k=9);
a(n) + n*(n-1) = n*(13*n-7)/2 (case k=13);
a(n) - n*(n+1)/2 = A135706(n);
a(n) + n*(n+1)/2 = A033579(n);
a(n) - n*(n+1) = A051682(n);
a(n) + n*(n+1) = A186030(n);
a(n) - n^2 = A062708(n);
a(n) + n^2 = n*(13*n-5)/2 = 0, 4, 21, 51, 94, 150, 219, ..., etc.
Sum of reciprocals of a(n), for n > 0: 0.47118857003113149692081665034891...

Crossrefs

Cf. sequences in Comments lines.
First differences are in A017425.

Programs

  • Magma
    [n*(11*n-5)/2: n in [0..50]];
    
  • Magma
    I:=[0,3,17]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..46]]; // Vincenzo Librandi, Aug 18 2013
    
  • Mathematica
    Table[n (11 n - 5)/2, {n, 0, 50}]
    CoefficientList[Series[x (3 + 8 x) / (1 - x)^3, {x, 0, 45}], x] (* Vincenzo Librandi, Aug 18 2013 *)
    LinearRecurrence[{3,-3,1},{0,3,17},50] (* Harvey P. Dale, Jan 14 2019 *)
  • PARI
    a(n)=n*(11*n-5)/2 \\ Charles R Greathouse IV, Sep 24 2015

Formula

G.f.: x*(3+8*x)/(1-x)^3.
a(n) + a(-n) = A033584(n).
From Elmo R. Oliveira, Dec 27 2024: (Start)
E.g.f.: exp(x)*x*(6 + 11*x)/2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
a(n) = n + A180223(n). (End)
Showing 1-10 of 21 results. Next