cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A005449 Second pentagonal numbers: a(n) = n*(3*n + 1)/2.

Original entry on oeis.org

0, 2, 7, 15, 26, 40, 57, 77, 100, 126, 155, 187, 222, 260, 301, 345, 392, 442, 495, 551, 610, 672, 737, 805, 876, 950, 1027, 1107, 1190, 1276, 1365, 1457, 1552, 1650, 1751, 1855, 1962, 2072, 2185, 2301, 2420, 2542, 2667, 2795, 2926, 3060, 3197, 3337, 3480
Offset: 0

Views

Author

Keywords

Comments

Number of edges in the join of the complete graph and the cycle graph, both of order n, K_n * C_n. - Roberto E. Martinez II, Jan 07 2002
Also number of cards to build an n-tier house of cards. - Martin Wohlgemuth, Aug 11 2002
The modular form Delta(q) = q*Product_{n>=1} (1-q^n)^24 = q*(1 + Sum_{n>=1} (-1)^n*(q^(n*(3*n-1)/2)+q^(n*(3*n+1)/2)))^24 = q*(1 + Sum_{n>=1} A033999(n)*(q^A000326(n)+q^a(n)))^24. - Jonathan Vos Post, Mar 15 2006
Row sums of triangle A134403.
Bisection of A001318. - Omar E. Pol, Aug 22 2011
Sequence found by reading the line from 0 in the direction 0, 7, ... and the line from 2 in the direction 2, 15, ... in the square spiral whose vertices are the generalized pentagonal numbers, A001318. - Omar E. Pol, Sep 08 2011
A general formula for the n-th second k-gonal number is given by T(n, k) = n*((k-2)*n+k-4)/2, n>=0, k>=5. - Omar E. Pol, Aug 04 2012
Partial sums give A006002. - Denis Borris, Jan 07 2013
A002260 is the following array A read by antidiagonals:
0, 1, 2, 3, 4, 5, ...
0, 1, 2, 3, 4, 5, ...
0, 1, 2, 3, 4, 5, ...
0, 1, 2, 3, 4, 5, ...
0, 1, 2, 3, 4, 5, ...
0, 1, 2, 3, 4, 5, ...
and a(n) is the hook sum: Sum_{k=0..n} A(n,k) + Sum_{r=0..n-1} A(r,n). - R. J. Mathar, Jun 30 2013
From Klaus Purath, May 13 2021: (Start)
This sequence and A000326 provide all integers m such that 24*m + 1 is a square. The union of the two sequences is A001318.
If A is a sequence satisfying the recurrence t(n) = 3*t(n-1) - 2*t(n-2) with the initial values either A(0) = 1, A(1) = n + 2 or A(0) = -1, A(1) = n - 1, then a(n) = (A(i)^2 - A(i-1)*A(i+1))/2^i + n^2 for i>0. (End)
a(n+1) is the number of Dyck paths of size (3,3n+2), i.e., the number of NE lattice paths from (0,0) to (3,3n+2) which stay above the line connecting these points. - Harry Richman, Jul 13 2021
Binomial transform of [0, 2, 3, 0, 0, 0, ...], being a(n) = 2*binomial(n,1) + 3*binomial(n,2). a(3) = 15 = [0, 2, 3, 0] dot [1, 3, 3, 1] = [0 + 6 + 9 + 0]. - Gary W. Adamson, Dec 17 2022
a(n) is the sum of longest side length of all nondegenerate integer-sided triangles with shortest side length n and middle side length (n + 1), n > 0. - Torlach Rush, Feb 04 2024

Examples

			From _Omar E. Pol_, Aug 22 2011: (Start)
Illustration of initial terms:
                                               O
                                             O O
                                 O         O O O
                               O O       O O O O
                     O       O O O     O O O O O
                   O O     O O O O     O O O O O
           O     O O O     O O O O     O O O O O
         O O     O O O     O O O O     O O O O O
    O    O O     O O O     O O O O     O O O O O
    O    O O     O O O     O O O O     O O O O O
    -    ---     -----     -------     ---------
    2     7        15         26           40
(End)
		

References

  • Henri Cohen, A Course in Computational Algebraic Number Theory, vol. 138 of Graduate Texts in Mathematics, Springer-Verlag, 2000.

Crossrefs

Cf. A016789 (first differences), A006002 (partial sums).
The generalized pentagonal numbers b*n+3*n*(n-1)/2, for b = 1 through 12, form sequences A000326, this sequence, A045943, A115067, A140090, A140091, A059845, A140672-A140675, A151542.
Cf. numbers of the form n*(n*k-k+4)/2 listed in A226488 (this sequence is the case k=3).
Cf. numbers of the form n*((2*k+1)*n+1)/2 listed in A022289 (this sequence is the case k=1).

Programs

Formula

a(n) = A110449(n, 1) for n>0.
G.f.: x*(2+x)/(1-x)^3. E.g.f.: exp(x)*(2*x + 3*x^2/2). a(n) = n*(3*n + 1)/2. a(-n) = A000326(n). - Michael Somos, Jul 18 2003
a(n) = A001844(n) - A000217(n+1) = A101164(n+2,2) for n>0. - Reinhard Zumkeller, Dec 03 2004
a(n) = Sum_{j=1..n} n+j. - Zerinvary Lajos, Sep 12 2006
a(n) = A126890(n,n). - Reinhard Zumkeller, Dec 30 2006
a(n) = 2*C(3*n,4)/C(3*n,2), n>=1. - Zerinvary Lajos, Jan 02 2007
a(n) = A000217(n) + A000290(n). - Zak Seidov, Apr 06 2008
a(n) = a(n-1) + 3*n - 1 for n>0, a(0)=0. - Vincenzo Librandi, Nov 18 2010
a(n) = A129267(n+5,n). - Philippe Deléham, Dec 21 2011
a(n) = 2*A000217(n) + A000217(n-1). - Philippe Deléham, Mar 25 2013
a(n) = A130518(3*n+1). - Philippe Deléham, Mar 26 2013
a(n) = (12/(n+2)!)*Sum_{j=0..n} (-1)^(n-j)*binomial(n,j)*j^(n+2). - Vladimir Kruchinin, Jun 04 2013
a(n) = floor(n/(1-exp(-2/(3*n)))) for n>0. - Richard R. Forberg, Jun 22 2013
a(n) = Sum_{i=1..n} (3*i - 1) for n >= 1. - Wesley Ivan Hurt, Oct 11 2013 [Corrected by Rémi Guillaume, Oct 24 2024]
a(n) = (A000292(6*n+k+1)-A000292(k))/(6*n+1) - A000217(3*n+k+1), for any k >= 0. - Manfred Arens, Apr 26 2015
Sum_{n>=1} 1/a(n) = 6 - Pi/sqrt(3) - 3*log(3) = 0.89036376976145307522... . - Vaclav Kotesovec, Apr 27 2016
a(n) = A000217(2*n) - A000217(n). - Bruno Berselli, Sep 21 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*Pi/sqrt(3) + 4*log(2) - 6. - Amiram Eldar, Jan 18 2021
From Klaus Purath, May 13 2021: (Start)
Partial sums of A016789 for n > 0.
a(n) = 3*n^2 - A000326(n).
a(n) = A000326(n) + n.
a(n) = A002378(n) + A000217(n-1) for n >= 1. [Corrected by Rémi Guillaume, Aug 14 2024] (End)
From Klaus Purath, Jul 14 2021: (Start)
b^2 = 24*a(n) + 1 we get by b^2 = (a(n+1) - a(n-1))^2 = (a(2*n)/n)^2.
a(2*n) = n*(a(n+1) - a(n-1)), n > 0.
a(2*n+1) = n*(a(n+1) - a(n)). (End)
A generalization of Lajos' formula, dated Sep 12 2006, follows. Let SP(k,n) = the n-th second k-gonal number. Then SP(2k+1,n) = Sum_{j=1..n} (k-1)*n+j+k-2. - Charlie Marion, Jul 13 2024
a(n) = Sum_{k = 0..3*n} (-1)^(n+k+1) * binomial(k, 2) * binomial(3*n+k, 2*k). - Peter Bala, Nov 03 2024
For integer m, (6*m + 1)^2*a(n) + a(m) = a((6*m+1)*n + m). - Peter Bala, Jan 09 2025

A005475 a(n) = n*(5*n+1)/2.

Original entry on oeis.org

0, 3, 11, 24, 42, 65, 93, 126, 164, 207, 255, 308, 366, 429, 497, 570, 648, 731, 819, 912, 1010, 1113, 1221, 1334, 1452, 1575, 1703, 1836, 1974, 2117, 2265, 2418, 2576, 2739, 2907, 3080, 3258, 3441, 3629
Offset: 0

Views

Author

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 11, ..., and the line from 3, in the direction 3, 24, ..., in the square spiral whose edges have length A195013 and whose vertices are the numbers A195014. - Omar E. Pol, Sep 26 2011
For n >= 3, a(n) is the sum of the numbers appearing in the 3rd row of an n X n square array whose elements are the numbers from 1..n^2, listed in increasing order by rows. - Wesley Ivan Hurt, May 17 2021

Crossrefs

Cf. similar sequences listed in A022289.

Programs

  • Maple
    seq(binomial(5*n+1,2)/5, n=0..34); # Zerinvary Lajos, Jan 21 2007
    a:=n->sum(2*n+j, j=1..n): seq(a(n), n=0..38); # Zerinvary Lajos, Apr 29 2007
  • Mathematica
    Table[n (5 n + 1)/2, {n, 0, 40}] (* Bruno Berselli, Oct 13 2016 *)
  • PARI
    a(n)=n*(5*n+1)/2; \\ Joerg Arndt, Mar 27 2013

Formula

a(n) = A110449(n, 2) for n>1.
a(n) = a(n-1) + 5*n - 2 for n>0, a(0)=0. - Vincenzo Librandi, Nov 18 2010
a(n) = A130520(5*n+2). - Philippe Deléham, Mar 26 2013
a(n) = A202803(n)/2. - Philippe Deléham, Mar 27 2013
a(n) = A162147(n) - A162147(n-1). - J. M. Bergot, Jun 21 2013
a(n) = A000217(3*n) - A000217(2*n). - Bruno Berselli, Oct 13 2016
From G. C. Greubel, Aug 23 2017: (Start)
G.f.: x*(2*x + 3)/(1-x)^3.
E.g.f.: (x/2)*(5*x+6)*exp(x). (End)
Sum_{n>=1} 1/a(n) = 10+2*gamma+2*Psi(1/5) = 0.57635... see A001620 and A200135. - R. J. Mathar, May 30 2022
Sum_{n>=1} 1/a(n) = 10 - sqrt(1+2/sqrt(5))*Pi - sqrt(5)*log(phi) - 5*log(5)/2, where phi is the golden ratio (A001622). - Amiram Eldar, Sep 10 2022

Extensions

Incorrect comment deleted and minor errors corrected by Johannes W. Meijer, Feb 04 2010

A022267 a(n) = n*(9*n + 1)/2.

Original entry on oeis.org

0, 5, 19, 42, 74, 115, 165, 224, 292, 369, 455, 550, 654, 767, 889, 1020, 1160, 1309, 1467, 1634, 1810, 1995, 2189, 2392, 2604, 2825, 3055, 3294, 3542, 3799, 4065, 4340, 4624, 4917, 5219, 5530, 5850, 6179
Offset: 0

Views

Author

Keywords

Comments

From Floor van Lamoen, Jul 21 2001: (Start)
Write 0, 1, 2, 3, 4, ... in a triangular spiral; then a(n) is the sequence found by reading the line from 0 in the direction 0, 5, ... . The spiral begins:
.
15
/ \
16 14
/ \
17 3 13
/ / \ \
18 4 2 12
/ / \ \
19 5 0---1 11
/ / \
20 6---7---8---9--10
.
(End)
a(n) is the sum of n consecutive integers starting from 4*n+1: (5), (9+10), (13+14+15), ... - Klaus Purath, Jul 07 2020
a(n) with n>0 are the numbers with the periodic length 3 in the Bulgarian and Mancala solitaire. - Paul Weisenhorn, Jan 29 2022

Crossrefs

Cf. similar sequences listed in A254963.
Cf. similar sequences listed in A022289.

Programs

  • Maple
    seq(binomial(9*n+1,2)/9, n=0..37); # Zerinvary Lajos, Jan 21 2007
  • Mathematica
    Table[ n (9 n + 1)/2, {n, 0, 40}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 5, 19}, 40] (* Harvey P. Dale, Jul 01 2013 *)
  • PARI
    vector(100,n,(n-1)*(9*n-8)/2) \\ Derek Orr, Feb 06 2015

Formula

a(n) = A110449(n, 4) for n>3.
From Bruno Berselli, Feb 11 2011: (Start)
G.f.: x*(5 + 4*x)/(1 - x)^3.
a(n) = 4*A000217(n) + A000566(n). (End)
a(n) = 9*n + a(n-1) - 4 with n>0, a(0)=0. - Vincenzo Librandi, Aug 04 2010
a(n) = A218470(9*n+4). - Philippe Deléham, Mar 27 2013
a(n) = A000217(5*n) - A000217(4*n). - Bruno Berselli, Oct 13 2016
E.g.f.: (1/2)*(9*x^2 + 10*x)*exp(x). - G. C. Greubel, Jul 17 2017
a(n) = A060544(n+1) - A016813(n). - Leo Tavares, Mar 20 2022

A022265 a(n) = n*(7*n + 1)/2.

Original entry on oeis.org

0, 4, 15, 33, 58, 90, 129, 175, 228, 288, 355, 429, 510, 598, 693, 795, 904, 1020, 1143, 1273, 1410, 1554, 1705, 1863, 2028, 2200, 2379, 2565, 2758, 2958, 3165, 3379, 3600, 3828, 4063, 4305, 4554, 4810
Offset: 0

Views

Author

Keywords

Comments

For n >= 4, a(n) is the sum of the numbers appearing in the 4th row of an n X n square array whose elements are the numbers from 1..n^2, listed in increasing order by rows. - Wesley Ivan Hurt, May 17 2021

Examples

			From _Bruno Berselli_, Oct 27 2017: (Start)
After 0:
4  =       -(1)       +             (2 + 3).
15 =     -(1 + 2)     +         (3 + 4 + 5 + 6).
33 =   -(1 + 2 + 3)   +     (4 + 5 + 6 + 7 + 8 + 9).
58 = -(1 + 2 + 3 + 4) + (5 + 6 + 7 + 8 + 9 + 10 + 11 + 12). (End)
		

Crossrefs

Cf. similar sequences listed in A022289.

Programs

Formula

a(n) = A110449(n, 3) for n>2.
a(n) = A049453(n) - A005475(n). - Zerinvary Lajos, Jan 21 2007
a(n) = 7*n + a(n-1) - 3 for n>0, a(0)=0. - Vincenzo Librandi, Aug 04 2010
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) with a(0)=0, a(1)=4, a(2)=15. - Philippe Deléham, Mar 26 2013
a(n) = A174738(7n+3). - Philippe Deléham, Mar 26 2013
a(n) = A000217(4*n) - A000217(3*n). - Bruno Berselli, Oct 13 2016
G.f.: x*(4 + 3*x)/(1 - x)^3. - Ilya Gutkovskiy, Oct 13 2016
E.g.f.: (x/2)*(7*x + 8)*exp(x). - G. C. Greubel, Aug 23 2017
a(n) = A000217(n) + 3*A000290(n). - Leo Tavares, Mar 15 2025

A022288 a(n) = n*(31*n-1)/2.

Original entry on oeis.org

0, 15, 61, 138, 246, 385, 555, 756, 988, 1251, 1545, 1870, 2226, 2613, 3031, 3480, 3960, 4471, 5013, 5586, 6190, 6825, 7491, 8188, 8916, 9675, 10465, 11286, 12138, 13021, 13935, 14880, 15856, 16863, 17901
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. similar sequences of the form n*((2*k+1)*n - 1)/2: A161680 (k=0), A000326 (k=1), A005476 (k=2), A022264 (k=3), A022266 (k=4), A022268 (k=5), A022270 (k=6), A022272 (k=7), A022274 (k=8), A022276 (k=9), A022278 (k=10), A022280 (k=11), A022282 (k=12), A022284 (k=13), A022286 (k=14), this sequence (k=15).

Programs

  • Mathematica
    Table[n (31 n - 1)/2, {n, 0, 40}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 15, 61}, 40] (* Harvey P. Dale, Mar 31 2014 *)
  • PARI
    a(n)=n*(31*n-1)/2 \\ Charles R Greathouse IV, Jun 17 2017

Formula

a(n) = 31*n + a(n-1) - 16 for n>0, a(0)=0. - Vincenzo Librandi, Aug 04 2010
a(0)=0, a(1)=15, a(2)=61; for n>2, a(n) = 3*a(n-1)-3*a(n-2)+a(n-3). - Harvey P. Dale, Mar 31 2014
G.f.: x*(15 + 16*x)/(1 - x)^3. - R. J. Mathar, Sep 02 2016
a(n) = A000217(16*n-1) - A000217(15*n-1). In general, n*((2*k+1)*n - 1)/2 = A000217((k+1)*n-1) - A000217(k*n-1), and the ordinary generating function is x*(k + (k+1)*x)/(1 - x)^3. - Bruno Berselli, Oct 14 2016
E.g.f.: (x/2)*(31*x + 30)*exp(x). - G. C. Greubel, Aug 24 2017

A022269 a(n) = n*(11*n+1)/2.

Original entry on oeis.org

0, 6, 23, 51, 90, 140, 201, 273, 356, 450, 555, 671, 798, 936, 1085, 1245, 1416, 1598, 1791, 1995, 2210, 2436, 2673, 2921, 3180, 3450, 3731, 4023, 4326, 4640, 4965, 5301, 5648, 6006, 6375, 6755, 7146, 7548, 7961, 8385, 8820, 9266, 9723, 10191, 10670, 11160
Offset: 0

Views

Author

Keywords

Comments

Number of sets which can be obtained by selecting unique elements from two sets with 2n and 3n elements respectively and n common elements. - Dolmatov S. (aalma(AT)mail.ru), Jun 24 2003

Crossrefs

Cf. A110449.
Cf. similar sequences listed in A022289.

Programs

Formula

a(n) = A110449(n, 5) for n>4.
a(n) = 11*n + a(n-1) - 5 with n>0, a(0)=0. - Vincenzo Librandi, Aug 04 2010
G.f.: x*(6 + 5*x)/(1 - x)^3. - Philippe Deléham, Mar 27 2013
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) with n>2, a(0)=0, a(1)=6, a(2)=23. - Philippe Deléham, Mar 27 2013
a(n) = A218530(11*n+5).
a(n) = A000217(6*n) - A000217(5*n). - Bruno Berselli, Oct 13 2016
E.g.f.: (x/2)*(11*x + 12)*exp(x). - G. C. Greubel, Aug 24 2017

A022271 a(n) = n*(13*n + 1)/2.

Original entry on oeis.org

0, 7, 27, 60, 106, 165, 237, 322, 420, 531, 655, 792, 942, 1105, 1281, 1470, 1672, 1887, 2115, 2356, 2610, 2877, 3157, 3450, 3756, 4075, 4407, 4752, 5110, 5481, 5865, 6262, 6672, 7095, 7531, 7980, 8442, 8917, 9405, 9906, 10420, 10947, 11487, 12040
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. similar sequences listed in A022289.

Programs

Formula

a(n) = A110449(n, 6) for n>5.
a(n) = 13*n + a(n-1) - 6 with n>0, a(0)=0. - Vincenzo Librandi, Aug 04 2010
G.f.: x*(7+6*x)/(1-x)^3. - Vincenzo Librandi, Mar 31 2015
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2 - Vincenzo Librandi, Mar 31 2015
a(n) = A022270(-n). - Bruno Berselli, Mar 31 2015
a(n) = A000217(7*n) - A000217(6*n). - Bruno Berselli, Oct 13 2016
E.g.f.: (x/2)*(13*x + 14)*exp(x). - G. C. Greubel, Aug 23 2017

Extensions

More terms from Vincenzo Librandi, Mar 31 2015

A022281 a(n) = n*(23*n + 1)/2.

Original entry on oeis.org

0, 12, 47, 105, 186, 290, 417, 567, 740, 936, 1155, 1397, 1662, 1950, 2261, 2595, 2952, 3332, 3735, 4161, 4610, 5082, 5577, 6095, 6636, 7200, 7787, 8397, 9030, 9686, 10365, 11067, 11792, 12540, 13311
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. similar sequences listed in A022289.

Programs

  • Mathematica
    Table[n (23 n + 1)/2, {n, 0, 40}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 12, 47}, 40] (* Harvey P. Dale, Aug 16 2016 *)
  • PARI
    a(n)=n*(23*n+1)/2 \\ Charles R Greathouse IV, Jun 16 2017

Formula

a(n) = 23*n + a(n-1) - 11 for n>0, a(0)=0. - Vincenzo Librandi, Aug 04 2010
G.f.: x*(12 + 11*x)/(1 - x)^3 . - R. J. Mathar, Aug 04 2016
a(n) = A000217(12*n) - A000217(11*n). - Bruno Berselli, Oct 13 2016
E.g.f.: (x/2)*(23*x + 24)*exp(x). - G. C. Greubel, Aug 23 2017

A022283 a(n) = n*(25*n + 1)/2.

Original entry on oeis.org

0, 13, 51, 114, 202, 315, 453, 616, 804, 1017, 1255, 1518, 1806, 2119, 2457, 2820, 3208, 3621, 4059, 4522, 5010, 5523, 6061, 6624, 7212, 7825, 8463, 9126, 9814, 10527, 11265, 12028, 12816, 13629, 14467
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. similar sequences listed in A022289.

Programs

  • Mathematica
    Table[n/2 (25 n + 1), {n, 0, 40}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 13, 51}, 40] (* Harvey P. Dale, May 04 2014 *)
  • PARI
    a(n)=n*(25*n+1)/2 \\ Charles R Greathouse IV, Jun 17 2017

Formula

a(n) = a(n-1) + 25*n - 12 for n>0, a(0)=0. - Vincenzo Librandi, Aug 04 2010
a(0)=0, a(1)=13, a(2)=51; for n>2, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, May 04 2014
a(n) = A000217(13*n) - A000217(12*n). - Bruno Berselli, Oct 13 2016
From G. C. Greubel, Aug 23 2017: (Start)
G.f.: x*(12*x + 13)/(1-x)^3.
E.g.f.: (x/2)*(25*x + 26)*exp(x). (End)

A022273 a(n) = n*(15*n + 1)/2.

Original entry on oeis.org

0, 8, 31, 69, 122, 190, 273, 371, 484, 612, 755, 913, 1086, 1274, 1477, 1695, 1928, 2176, 2439, 2717, 3010, 3318, 3641, 3979, 4332, 4700, 5083, 5481, 5894, 6322, 6765, 7223, 7696, 8184, 8687, 9205, 9738, 10286, 10849, 11427, 12020, 12628, 13251, 13889
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. similar sequences listed in A022289.

Programs

Formula

a(n) = A110449(n, 7) for n>6.
a(n) = 15*n + a(n-1) - 7 for n>0, a(0)=0. - Vincenzo Librandi, Aug 04 2010
G.f.: x*(8+7*x)/(1-x)^3. - Vincenzo Librandi, Mar 31 2015
a(n) = 3*a(n-1) - 3*a(n-2) - a(n-3) for n>2. - Vincenzo Librandi, Mar 31 2015
a(n) = A022272(-n). - Bruno Berselli, Mar 31 2015
a(n) + a(-n) = A064761(n). - Bruno Berselli, Mar 31 2015
a(n) = A000217(8*n) - A000217(7*n). - Bruno Berselli, Oct 13 2016
E.g.f.: (x/2)*(15*x + 16)*exp(x). - G. C. Greubel, Aug 23 2017

Extensions

More terms from Vincenzo Librandi, Mar 31 2015
Showing 1-10 of 15 results. Next