cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A022289 a(n) = n*(31*n + 1)/2.

Original entry on oeis.org

0, 16, 63, 141, 250, 390, 561, 763, 996, 1260, 1555, 1881, 2238, 2626, 3045, 3495, 3976, 4488, 5031, 5605, 6210, 6846, 7513, 8211, 8940, 9700, 10491, 11313, 12166, 13050, 13965, 14911, 15888, 16896, 17935
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. similar sequences of the form n*((2*k+1)*n + 1)/2: A000217 (k=0), A005449 (k=1), A005475 (k=2), A022265 (k=3), A022267 (k=4), A022269 (k=5), A022271 (k=6), A022273 (k=7), A022275 (k=8), A022277 (k=9), A022279 (k=10), A022281 (k=11), A022283 (k=12), A022285 (k=13), A022287 (k=14), this sequence (k=15).

Programs

Formula

a(n) = 31*n + a(n-1) - 15, for n>0, a(0)=0. - Vincenzo Librandi, Aug 04 2010
G.f.: x*(16 + 15*x)/(1 - x)^3 . - R. J. Mathar, Sep 02 2016
a(n) = A000217(16*n) - A000217(15*n). In general, n*((2*k+1)*n + 1)/2 = A000217((k+1)*n) - A000217(k*n). - Bruno Berselli, Oct 13 2016
E.g.f.: (x/2)*(31*x + 32)*exp(x). - G. C. Greubel, Aug 23 2017

A110449 Triangle read by rows: T(n,k) = n*((2*k+1)*n+1)/2, 0<=k<=n.

Original entry on oeis.org

0, 1, 2, 3, 7, 11, 6, 15, 24, 33, 10, 26, 42, 58, 74, 15, 40, 65, 90, 115, 140, 21, 57, 93, 129, 165, 201, 237, 28, 77, 126, 175, 224, 273, 322, 371, 36, 100, 164, 228, 292, 356, 420, 484, 548, 45, 126, 207, 288, 369, 450, 531, 612, 693, 774, 55, 155, 255, 355, 455, 555, 655, 755, 855, 955, 1055
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 21 2005

Keywords

Comments

Row sums give A110450; central terms give A110451;
T(n,0) = A000217(n);
T(n,1) = A005449(n) for n>0;
T(n,2) = A005475(n) for n>1;
T(n,3) = A022265(n) for n>2;
T(n,4) = A022267(n) for n>3;
T(n,5) = A022269(n) for n>4;
T(n,6) = A022271(n) for n>5;
T(n,7) = A022263(n) for n>6;
T(n+1,n-1) = A059270(n) for n>1;
T(n,n-1) = A081436(n) for n>1;
T(n,n) = A085786(n).

Examples

			Triangle starts:
0;
1, 2;
3, 7, 11;
6, 15, 24, 33;
10, 26, 42, 58, 74;
...
		

Crossrefs

Cf. A126890.

Programs

  • Mathematica
    Table[n*((2*k + 1)*n + 1)/2, {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Aug 23 2017 *)
  • PARI
    tabl(nn) = {for (n=0, nn, for (k=0, n, print1(n*((2*k+1)*n+1)/2, ", ");); print(););} \\ Michel Marcus, Jun 22 2015

Formula

T(n,k) = n*((2*k + 1)*n + 1)/2, 0 <= k <= n.

A269044 a(n) = 13*n + 7.

Original entry on oeis.org

7, 20, 33, 46, 59, 72, 85, 98, 111, 124, 137, 150, 163, 176, 189, 202, 215, 228, 241, 254, 267, 280, 293, 306, 319, 332, 345, 358, 371, 384, 397, 410, 423, 436, 449, 462, 475, 488, 501, 514, 527, 540, 553, 566, 579, 592, 605, 618, 631, 644, 657, 670, 683, 696, 709, 722, 735
Offset: 0

Views

Author

Bruno Berselli, Feb 18 2016

Keywords

Comments

After 7 (which corresponds to n=0), all terms belong to A090767 because a(n) = 3*n*2*1 + 2*(n*2+2*1+n*1) + (n+2+1).
This sequence is related to A152741 by the recurrence A152741(n+1) = (n+1)*a(n+1) - Sum_{k = 0..n} a(k).
Any square mod 13 is one of 0, 1, 3, 4, 9, 10 or 12 (A010376) but not 7, and for this reason there are no squares in the sequence. Likewise, any cube mod 13 is one of 0, 1, 5, 8 or 12, therefore no a(k) is a cube.
The sum of the squares of any two terms of the sequence is also a term of the sequence, that is: a(h)^2 + a(k)^2 = a(h*(13*h+14) + k*(13*k+14) + 7). Therefore: a(h)^2 + a(k)^2 > a(a( h*(h+1) + k*(k+1) )) for h+k > 0.
The primes of the sequence are listed in A140371.

Crossrefs

Cf. A010376, A022271 (partial sums), A088227, A090767, A140371, A152741.
Similar sequences with closed form (2*k-1)*n+k: A001489 (k=0), A000027 (k=1), A016789 (k=2), A016885 (k=3), A017029 (k=4), A017221 (k=5), A017461 (k=6), this sequence (k=7), A164284 (k=8).
Sequences of the form 13*n+q: A008595 (q=0), A190991 (q=1), A153080 (q=2), A127547 (q=4), A154609 (q=5), A186113 (q=6), this sequence (q=7), A269100 (q=11).

Programs

  • Magma
    [13*n+7: n in [0..60]];
    
  • Mathematica
    13 Range[0, 60] + 7 (* or *) Range[7, 800, 13] (* or *) Table[13 n + 7, {n, 0, 60}]
    LinearRecurrence[{2, -1}, {7, 20}, 60] (* Vincenzo Librandi, Feb 19 2016 *)
  • Maxima
    makelist(13*n+7, n, 0, 60);
    
  • PARI
    vector(60, n, n--; 13*n+7)
    
  • Sage
    [13*n+7 for n in (0..60)]

Formula

G.f.: (7 + 6*x)/(1 - x)^2.
a(n) = A088227(4*n+3).
a(n) = -A186113(-n-1).
Sum_{i=h..h+13*k} a(i) = a(h*(13*k + 1) + k*(169*k + 27)/2).
Sum_{i>=0} 1/a(i)^2 = 0.0257568950542502716970... = polygamma(1, 7/13)/13^2.
E.g.f.: exp(x)*(7 + 13*x). - Stefano Spezia, Aug 02 2021

A022270 a(n) = n*(13*n - 1)/2.

Original entry on oeis.org

0, 6, 25, 57, 102, 160, 231, 315, 412, 522, 645, 781, 930, 1092, 1267, 1455, 1656, 1870, 2097, 2337, 2590, 2856, 3135, 3427, 3732, 4050, 4381, 4725, 5082, 5452, 5835, 6231, 6640, 7062, 7497, 7945, 8406, 8880, 9367, 9867, 10380, 10906, 11445
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. similar sequences listed in A022288.

Programs

  • Magma
    [n*(13*n - 1)/2: n in [0..45]]; // Vincenzo Librandi, Mar 31 2015
  • Mathematica
    Table[n (13 n - 1)/2, {n, 0, 40}] (* or *) LinearRecurrence[{3,-3,1},{0,6,25},40] (* Harvey P. Dale, Dec 02 2011 *)
    CoefficientList[Series[x (6 + 7 x) / (1 - x)^3, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 31 2015 *)
  • PARI
    A022270(n) = n*(13*n-1)/2 \\ Michael B. Porter, Mar 12 2010
    

Formula

a(n) = 13*n + a(n-1) - 7 for n>0, a(0)=0. - Vincenzo Librandi, Aug 04 2010
a(0)=0, a(1)=6, a(2)=25; for n>2, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Dec 02 2011
G.f.: x*(6 + 7*x)/(1 - x)^3. - Vincenzo Librandi, Mar 31 2015
a(n) = A022271(-n). - Bruno Berselli, Mar 31 2015
a(n) = A000217(7*n-1) - A000217(6*n-1). - Bruno Berselli, Oct 17 2016
E.g.f.: (x/2)*(13*x + 12)*exp(x). - G. C. Greubel, Aug 23 2017

Extensions

More terms from Vincenzo Librandi, Mar 31 2015
Showing 1-4 of 4 results.