cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A016789 a(n) = 3*n + 2.

Original entry on oeis.org

2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 50, 53, 56, 59, 62, 65, 68, 71, 74, 77, 80, 83, 86, 89, 92, 95, 98, 101, 104, 107, 110, 113, 116, 119, 122, 125, 128, 131, 134, 137, 140, 143, 146, 149, 152, 155, 158, 161, 164, 167, 170, 173, 176, 179
Offset: 0

Views

Author

Keywords

Comments

Except for 1, n such that Sum_{k=1..n} (k mod 3)*binomial(n,k) is a power of 2. - Benoit Cloitre, Oct 17 2002
The sequence 0,0,2,0,0,5,0,0,8,... has a(n) = n*(1 + cos(2*Pi*n/3 + Pi/3) - sqrt(3)*sin(2*Pi*n + Pi/3))/3 and o.g.f. x^2(2+x^3)/(1-x^3)^2. - Paul Barry, Jan 28 2004 [Artur Jasinski, Dec 11 2007, remarks that this should read (3*n + 2)*(1 + cos(2*Pi*(3*n + 2)/3 + Pi/3) - sqrt(3)*sin(2*Pi*(3*n + 2)/3 + Pi/3))/3.]
Except for 2, exponents e such that x^e + x + 1 is reducible. - N. J. A. Sloane, Jul 19 2005
The trajectory of these numbers under iteration of sum of cubes of digits eventually turns out to be 371 or 407 (47 is the first of the second kind). - Avik Roy (avik_3.1416(AT)yahoo.co.in), Jan 19 2009
Union of A165334 and A165335. - Reinhard Zumkeller, Sep 17 2009
a(n) is the set of numbers congruent to {2,5,8} mod 9. - Gary Detlefs, Mar 07 2010
It appears that a(n) is the set of all values of y such that y^3 = k*n + 2 for integer k. - Gary Detlefs, Mar 08 2010
These numbers do not occur in A000217 (triangular numbers). - Arkadiusz Wesolowski, Jan 08 2012
A089911(2*a(n)) = 9. - Reinhard Zumkeller, Jul 05 2013
Also indices of even Bell numbers (A000110). - Enrique Pérez Herrero, Sep 10 2013
Central terms of the triangle A108872. - Reinhard Zumkeller, Oct 01 2014
A092942(a(n)) = 1 for n > 0. - Reinhard Zumkeller, Dec 13 2014
a(n-1), n >= 1, is also the complex dimension of the manifold E(S), the set of all second-order irreducible Fuchsian differential equations defined on P^1 = C U {oo}, having singular points at most in S = {a_1, ..., a_n, a_{n+1} = oo}, a subset of P^1. See the Iwasaki et al. reference, Proposition 2.1.3., p. 149. - Wolfdieter Lang, Apr 22 2016
Except for 2, exponents for which 1 + x^(n-1) + x^n is reducible. - Ron Knott, Sep 16 2016
The reciprocal sum of 8 distinct items from this sequence can be made equal to 1, with these terms: 2, 5, 8, 14, 20, 35, 41, 1640. - Jinyuan Wang, Nov 16 2018
There are no positive integers x, y, z such that 1/a(x) = 1/a(y) + 1/a(z). - Jinyuan Wang, Dec 31 2018
As a set of positive integers, it is the set sum S + S where S is the set of numbers in A016777. - Michael Somos, May 27 2019
Interleaving of A016933 and A016969. - Leo Tavares, Nov 16 2021
Prepended with {1}, these are the denominators of the elements of the 3x+1 semigroup, the numerators being A005408 prepended with {2}. See Applegate and Lagarias link for more information. - Paolo Xausa, Nov 20 2021
This is also the maximum number of moves starting with n + 1 dots in the game of Sprouts. - Douglas Boffey, Aug 01 2022 [See the Wikipedia link. - Wolfdieter Lang, Sep 29 2022]
a(n-2) is the maximum sum of the span (or L(2,1)-labeling number) of a graph of order n and its complement. The extremal graphs are stars and their complements. For example, K_{1,2} has span 3, and K_2 has span 2. Thus a(3-1) = 5. - Allan Bickle, Apr 20 2023

Examples

			G.f. = 2 + 5*x + 8*x^2 + 11*x^3 + 14*x^4 + 17*x^5 + 20*x^6 + ... - _Michael Somos_, May 27 2019
		

References

  • K. Iwasaki, H. Kimura, S. Shimomura and M. Yoshida, From Gauss to Painlevé, Vieweg, 1991. p. 149.
  • Konrad Knopp, Theory and Application of Infinite Series, Dover, p. 269

Crossrefs

First differences of A005449.
Cf. A087370.
Cf. similar sequences with closed form (2*k-1)*n+k listed in A269044.

Programs

Formula

G.f.: (2+x)/(1-x)^2.
a(n) = 3 + a(n-1).
a(n) = 1 + A016777(n).
a(n) = A124388(n)/9.
a(n) = A125199(n+1,1). - Reinhard Zumkeller, Nov 24 2006
Sum_{n>=1} (-1)^n/a(n) = (1/3)*(Pi/sqrt(3) - log(2)). - Benoit Cloitre, Apr 05 2002
1/2 - 1/5 + 1/8 - 1/11 + ... = (1/3)*(Pi/sqrt(3) - log 2). [Jolley] - Gary W. Adamson, Dec 16 2006
Sum_{n>=0} 1/(a(2*n)*a(2*n+1)) = (Pi/sqrt(3) - log 2)/9 = 0.12451569... (see A196548). [Jolley p. 48 eq (263)]
a(n) = 2*a(n-1) - a(n-2); a(0)=2, a(1)=5. - Philippe Deléham, Nov 03 2008
a(n) = 6*n - a(n-1) + 1 with a(0)=2. - Vincenzo Librandi, Aug 25 2010
Conjecture: a(n) = n XOR A005351(n+1) XOR A005352(n+1). - Gilian Breysens, Jul 21 2017
E.g.f.: (2 + 3*x)*exp(x). - G. C. Greubel, Nov 02 2018
a(n) = A005449(n+1) - A005449(n). - Jinyuan Wang, Feb 03 2019
a(n) = -A016777(-1-n) for all n in Z. - Michael Somos, May 27 2019
a(n) = A007310(n+1) + (1 - n mod 2). - Walt Rorie-Baety, Sep 13 2021
a(n) = A000096(n+1) - A000217(n-1). See Capped Triangular Frames illustration. - Leo Tavares, Oct 05 2021

A016885 a(n) = 5*n + 3.

Original entry on oeis.org

3, 8, 13, 18, 23, 28, 33, 38, 43, 48, 53, 58, 63, 68, 73, 78, 83, 88, 93, 98, 103, 108, 113, 118, 123, 128, 133, 138, 143, 148, 153, 158, 163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 213, 218, 223, 228, 233, 238, 243, 248, 253, 258, 263, 268, 273, 278, 283
Offset: 0

Views

Author

Keywords

Comments

Numbers ending in 3 or 8. - Lekraj Beedassy, Jul 08 2006
Number of moves in game of Brussels Sprouts with n+1 crosses. - Charles R Greathouse IV, Mar 09 2014

References

  • Elwyn R. Berlekamp, John Conway, and Richard K. Guy, Winning Ways for your Mathematical Plays, A K Peters, 2001.

Crossrefs

Cf. similar sequences with closed form (2*k-1)*n+k listed in A269044.

Programs

Formula

a(n) = floor((15*n+10)/3). - Gary Detlefs, Mar 07 2010
G.f.: (3+2*x)/(1-x)^2. - Colin Barker, Jan 08 2012
E.g.f.: (3 + 5*x)*exp(x). - G. C. Greubel, Jul 05 2019
a(n) = 2*a(n-1)-a(n-2). - Wesley Ivan Hurt, Apr 22 2021
Sum_{n>=0} (-1)^n/a(n) = sqrt(2-2/sqrt(5))*Pi/10 - log(phi)/sqrt(5) + log(2)/5, where phi is the golden ratio (A001622). - Amiram Eldar, Apr 15 2023
a(n)^2 + (a(n)+1)^2 - n^2 = A017041(n)^2. - Charlie Marion, Apr 30 2023

Extensions

More terms from James Sellers, Jul 06 2000

A017029 a(n) = 7*n + 4.

Original entry on oeis.org

4, 11, 18, 25, 32, 39, 46, 53, 60, 67, 74, 81, 88, 95, 102, 109, 116, 123, 130, 137, 144, 151, 158, 165, 172, 179, 186, 193, 200, 207, 214, 221, 228, 235, 242, 249, 256, 263, 270, 277, 284, 291, 298, 305, 312, 319, 326, 333, 340, 347, 354, 361, 368, 375, 382
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. similar sequences with closed form (2*k-1)*n+k listed in A269044.

Programs

Formula

G.f.: (3*x + 4)/(1-x)^2. - Vincenzo Librandi, Jan 27 2013
From Elmo R. Oliveira, Apr 12 2025: (Start)
E.g.f.: exp(x)*(4 + 7*x).
a(n) = 2*a(n-1) - a(n-2). (End)

Extensions

Extended by Ray Chandler, Jan 25 2005

A017221 a(n) = 9*n + 5.

Original entry on oeis.org

5, 14, 23, 32, 41, 50, 59, 68, 77, 86, 95, 104, 113, 122, 131, 140, 149, 158, 167, 176, 185, 194, 203, 212, 221, 230, 239, 248, 257, 266, 275, 284, 293, 302, 311, 320, 329, 338, 347, 356, 365, 374, 383, 392, 401, 410, 419, 428, 437, 446, 455, 464, 473, 482
Offset: 0

Views

Author

Keywords

Comments

Numbers whose digital root is 5. - Halfdan Skjerning, Mar 15 2018

References

  • R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section D5.

Crossrefs

Sequences of the form (9*n+5)^k: this sequence (k=1), A017222 (k=2), A017223 (k=3), A017224 (k=4), A017225 (k=5), A017226 (k=6), A017227 (k=7), A017228 (k=8), A017229 (k=9), A017230 (k=10), A017231 (k=11).
Cf. similar sequences with closed form (2*k-1)*n+k listed in A269044.

Programs

Formula

G.f.: (5+4*x)/(1-x)^2. - R. J. Mathar, Mar 20 2018
From G. C. Greubel, Jan 06 2023: (Start)
a(n) = a(n-1) + 9, with a(0) = 5.
E.g.f.: (5 + 9*x)*exp(x). (End)
From Elmo R. Oliveira, Apr 10 2025: (Start)
a(n) = 2*a(n-1) - a(n-2).
a(n) = A016789(3*n+1). (End)

A017461 a(n) = 11*n + 6.

Original entry on oeis.org

6, 17, 28, 39, 50, 61, 72, 83, 94, 105, 116, 127, 138, 149, 160, 171, 182, 193, 204, 215, 226, 237, 248, 259, 270, 281, 292, 303, 314, 325, 336, 347, 358, 369, 380, 391, 402, 413, 424, 435, 446, 457, 468, 479, 490, 501, 512, 523, 534, 545, 556, 567, 578, 589
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. similar sequences with closed form (2*k-1)*n+k listed in A269044.
Powers of the form (11*n+6)^m: this sequence (m=1), A017462 (m=2), A017463 (m=3), A017464 (m=4), A017465 (m=5), A017466 (m=6), A017467 (m=7), A017468 (m=8), A017469 (m=9), A017470 (m=10), A017471 (m=11), A017472 (m=12).

Programs

Formula

a(0)=6, a(1)=17; for n>1, a(n) = 2*a(n-1) - a(n-2). - Harvey P. Dale, Apr 14 2015
From G. C. Greubel, Sep 19 2019: (Start)
G.f.: (6 + 5*x)/(1-x)^2.
E.g.f.: (6 + 11*x)*exp(x). (End)
a(n) = A141694(n)/2. - Elmo R. Oliveira, Apr 11 2025

A154609 a(n) = 13*n + 5.

Original entry on oeis.org

5, 18, 31, 44, 57, 70, 83, 96, 109, 122, 135, 148, 161, 174, 187, 200, 213, 226, 239, 252, 265, 278, 291, 304, 317, 330, 343, 356, 369, 382, 395, 408, 421, 434, 447, 460, 473, 486, 499, 512, 525, 538, 551, 564, 577, 590, 603, 616, 629, 642, 655, 668, 681, 694
Offset: 0

Views

Author

Vincenzo Librandi, Jan 15 2009

Keywords

Comments

Any square mod 13 is one of 0, 1, 3, 4, 9, 10 or 12 (A010376) but not 5, for this reason there are no squares in sequence. - Bruno Berselli, Feb 19 2016

Crossrefs

Cf. A010376,
Sequences of the form 13*n+q: A008595 (q=0), A190991 (q=1), A153080 (q=2), A127547 (q=4), this sequence (q=5), A186113 (q=6), A269044 (q=7), A269100 (q=11).

Programs

Formula

From Vincenzo Librandi, Feb 26 2012: (Start)
G.f.: (5+8*x)/(1-x)^2.
a(n) = 2*a(n-1) - a(n-2). (End)
E.g.f.: (5 + 13*x)*exp(x). - G. C. Greubel, May 31 2024

A269100 a(n) = 13*n + 11.

Original entry on oeis.org

11, 24, 37, 50, 63, 76, 89, 102, 115, 128, 141, 154, 167, 180, 193, 206, 219, 232, 245, 258, 271, 284, 297, 310, 323, 336, 349, 362, 375, 388, 401, 414, 427, 440, 453, 466, 479, 492, 505, 518, 531, 544, 557, 570, 583, 596, 609, 622, 635, 648, 661, 674, 687, 700, 713, 726, 739
Offset: 0

Views

Author

Bruno Berselli, Feb 19 2016

Keywords

Comments

Any square mod 13 is one of 0, 1, 3, 4, 9, 10 or 12 (A010376) but not 11, and for this reason there are no squares in the sequence. Likewise, any cube mod 13 is one of 0, 1, 5, 8 or 12, therefore no a(k) is a cube.
Sequences of the type 13*n + k, for k = 0..12, without squares and cubes:
k = 2: A153080,
k = 6: A186113,
k = 7: A269044,
k = 11: this case.
The sum of the sixth powers of any two terms of the sequence is also a term of the sequence. Example: a(3)^6 + a(8)^6 = a(179129674278) = 2328685765625.
The primes of the sequence are listed in A140373.

Crossrefs

Subsequence of A094784, A106389.
Cf. A140373.
Similar sequences of the type k*n+k-2: A023443 (k=1), A005843 (k=2), A016777 (k=3), A016825 (k=4), A016885 (k=5), A016957 (k=6), A017041 (k=7), A017137 (k=8), A017245 (k=9), A017365 (k=10), A017497 (k=11), A017641 (k=12).
Sequences of the form 13*n+q: A008595 (q=0), A190991 (q=1), A153080 (q=2), A127547 (q=4), A154609 (q=5), A186113 (q=6), A269044 (q=7), this sequence (q=11).

Programs

  • Magma
    [13*n+11: n in [0..60]];
  • Mathematica
    13 Range[0,60] + 11
    Range[11, 800, 13]
    Table[13 n + 11, {n, 0, 60}] (* Bruno Berselli, Feb 22 2016 *)
    LinearRecurrence[{2,-1},{11,24},60] (* Harvey P. Dale, Jun 14 2023 *)
  • Maxima
    makelist(13*n+11, n, 0, 60);
    
  • PARI
    vector(60, n, n--; 13*n+11)
    
  • Python
    [13*n+11 for n in range(61)]
    
  • Sage
    [13*n+11 for n in range(61)]
    

Formula

G.f.: (11 + 2*x)/(1 - x)^2.
a(n) = -A153080(-n-1).
Sum_{i = h..h+13*k} a(i) = a(h*(13*k + 1) + k*(169*k + 35)/2).
Sum_{i >= 0} 1/a(i)^2 = .012486605016510955990... = polygamma(1, 11/13)/13^2.
E.g.f.: (11 + 13*x)*exp(x). - G. C. Greubel, May 31 2024

A186113 a(n) = 13*n + 6.

Original entry on oeis.org

6, 19, 32, 45, 58, 71, 84, 97, 110, 123, 136, 149, 162, 175, 188, 201, 214, 227, 240, 253, 266, 279, 292, 305, 318, 331, 344, 357, 370, 383, 396, 409, 422, 435, 448, 461, 474, 487, 500, 513, 526, 539, 552, 565, 578, 591, 604, 617, 630, 643, 656, 669, 682
Offset: 0

Views

Author

Omar E. Pol, Feb 12 2011

Keywords

Comments

These numbers appear in the G. E. Andrews paper, for example: see the abstract, formula (1.7), etc. Also "13n + 6" appears in the Folsom-Ono paper (see links).
Row 6 of triangle A151890 lists the first seven terms of this sequence.
Any square mod 13 is one of 0, 1, 3, 4, 9, 10 or 12 (A010376) but not 6, and for this reason there are no squares in the sequence. Likewise, any cube mod 13 is one of 0, 1, 5, 8 or 12, therefore no a(k) is a cube. - Bruno Berselli, Feb 19 2016

Crossrefs

Sequences of the form 13*n+q: A008595 (q=0), A190991 (q=1), A153080 (q=2),
A127547 (q=4), A154609 (q=5), this sequence (q=6), A269044 (q=7), A269100 (q=11).

Programs

Formula

G.f.: (6+7*x)/(1-x)^2.
E.g.f.: (6 + 13*x)*exp(x). - G. C. Greubel, May 31 2024

A127547 a(n) = 13*n + 4.

Original entry on oeis.org

4, 17, 30, 43, 56, 69, 82, 95, 108, 121, 134, 147, 160, 173, 186, 199, 212, 225, 238, 251, 264, 277, 290, 303, 316, 329, 342, 355, 368, 381, 394, 407, 420, 433, 446, 459, 472, 485, 498, 511, 524, 537, 550, 563, 576, 589, 602, 615, 628, 641, 654, 667, 680, 693, 706, 719
Offset: 0

Views

Author

Robert H Barbour, Apr 01 2007

Keywords

Comments

Superhighway created by 'LQTL Ant' L90R90L45R45 from iteration 4 where the Ant moves in a 'Moore neighborhood' (nine cells), the L indicates a left turn, the R a right turn, and the numerical value is the size of the turn (in degrees) at each iteration.
Ant Farm algorithm available from Robert H Barbour.

References

  • P. Sakar, "A Brief History of Cellular Automata," ACM Computing Surveys, vol. 32, pp. 80-107, 2000.

Crossrefs

A subsequence of A092464.
Sequences of the form 13*n+q: A008595 (q=0), A190991 (q=1), A153080 (q=2), this sequence (q=4), A154609 (q=5), A186113 (q=6), A269044 (q=7), A269100 (q=11).

Programs

Formula

From Elmo R. Oliveira, Mar 21 2024: (Start)
G.f.: (4+9*x)/(1-x)^2.
E.g.f.: (4 + 13*x)*exp(x).
a(n) = 2*a(n-1) - a(n-2) for n >= 2. (End)

Extensions

Edited by N. J. A. Sloane, May 10 2007

A153384 Numbers n such that 24*n+1 is not prime.

Original entry on oeis.org

0, 1, 2, 5, 6, 7, 9, 11, 12, 15, 16, 20, 21, 22, 23, 26, 27, 29, 30, 31, 33, 34, 35, 36, 37, 38, 40, 41, 44, 45, 46, 49, 51, 53, 56, 57, 58, 59, 60, 61, 63, 64, 65, 66, 68, 70, 71, 72, 76, 77, 79, 80, 81, 82, 85, 86, 91, 92, 93, 94, 96, 97, 98, 100, 101, 102
Offset: 1

Views

Author

Vincenzo Librandi, Dec 25 2008

Keywords

Comments

Contains all numbers == 1 (mod 5), ==2 (mod 7), ==5 (mod 11), == 7 (mod 13), == 12 (mod 17), == 15 (mod 19), == 22 (mod 23), == 6 (mod 29) etc, so it is the union of A016861, A017005, A017449, A269044, etc. - R. J. Mathar, Jun 10 2020
Even terms of A153383, halved. - R. J. Mathar, Jun 10 2020

Examples

			Triangle begins:
*;
*,1;
*,*,2;
*,*,*,*;
*,*,*,*,5;
*,*,*,*,*,7;
*,*,*,*,*,*,*;
*,*,*,*,*,*,*,12;
*,*,*,*,*,*,*,*,15;
*,*,*,*,*,*,*,*,*,*;
*,*,*,*,*,*,*,*,*,*,22; etc.
where * marks the non-integer values of (2*h*k + k + h)/12 with h >= k >= 1. - _Vincenzo Librandi_, Jan 14 2013
		

Crossrefs

Cf. A001318, A111174 (complement).

Programs

  • Magma
    [n: n in [0..150] | not IsPrime(24*n + 1)]; // Vincenzo Librandi, Jan 14 2013
  • Mathematica
    Select[Range[0, 200], !PrimeQ[24 # + 1] &] (* Vincenzo Librandi, Jan 14 2013 *)

Extensions

0 added by Arkadiusz Wesolowski, Aug 03 2011
Showing 1-10 of 12 results. Next