A016789
a(n) = 3*n + 2.
Original entry on oeis.org
2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 50, 53, 56, 59, 62, 65, 68, 71, 74, 77, 80, 83, 86, 89, 92, 95, 98, 101, 104, 107, 110, 113, 116, 119, 122, 125, 128, 131, 134, 137, 140, 143, 146, 149, 152, 155, 158, 161, 164, 167, 170, 173, 176, 179
Offset: 0
G.f. = 2 + 5*x + 8*x^2 + 11*x^3 + 14*x^4 + 17*x^5 + 20*x^6 + ... - _Michael Somos_, May 27 2019
- K. Iwasaki, H. Kimura, S. Shimomura and M. Yoshida, From Gauss to Painlevé, Vieweg, 1991. p. 149.
- Konrad Knopp, Theory and Application of Infinite Series, Dover, p. 269
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- D. Applegate and J. C. Lagarias, The 3x+1 semigroup, Journal of Number Theory, Vol. 177, Issue 1, March 2006, pp. 146-159; see also the arXiv version, arXiv:math/0411140 [math.NT], 2004-2005.
- H. Balakrishnan and N. Deo, Parallel algorithm for radiocoloring a graph, Congr. Numer. 160 (2003), 193-204.
- Allan Bickle, Extremal Decompositions for Nordhaus-Gaddum Theorems, Discrete Math, 346 7 (2023), 113392.
- L. Euler, Observatio de summis divisorum p. 9.
- L. Euler, An observation on the sums of divisors, arXiv:math/0411587 [math.HO], 2004-2009, p. 9.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 937
- L. B. W. Jolley, Summation of Series, Dover, 1961, p. 16
- Tanya Khovanova, Recursive Sequences
- Konrad Knopp, Theorie und Anwendung der unendlichen Reihen, Berlin, J. Springer, 1922. (Original German edition of "Theory and Application of Infinite Series")
- Fabian S. Reid, The Visual Pattern in the Collatz Conjecture and Proof of No Non-Trivial Cycles, arXiv:2105.07955 [math.GM], 2021.
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014-2015.
- Leo Tavares, Illustration: Capped Triangular Frames
- Wikipedia, Sprouts (game)
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Cf.
A002939,
A017041,
A017485,
A125202,
A017233,
A179896,
A017617,
A016957,
A008544 (partial products),
A032766,
A016777,
A124388,
A005351.
Cf. similar sequences with closed form (2*k-1)*n+k listed in
A269044.
-
List([0..70],n->3*n+2); # Muniru A Asiru, Nov 02 2018
-
a016789 = (+ 2) . (* 3) -- Reinhard Zumkeller, Jul 05 2013
-
[3*n+2: n in [0..80]]; // Vincenzo Librandi, Apr 14 2015
-
seq(3*n+2, n = 0 .. 50); # Matt C. Anderson, May 18 2017
-
Range[2, 500, 3] (* Vladimir Joseph Stephan Orlovsky, May 26 2011 *)
LinearRecurrence[{2,-1},{2,5},70] (* Harvey P. Dale, Aug 11 2021 *)
-
vector(100,n,3*n-1) \\ Derek Orr, Apr 13 2015
-
for n in range(0,100): print(3*n+2, end=', ') # Stefano Spezia, Nov 21 2018
A016885
a(n) = 5*n + 3.
Original entry on oeis.org
3, 8, 13, 18, 23, 28, 33, 38, 43, 48, 53, 58, 63, 68, 73, 78, 83, 88, 93, 98, 103, 108, 113, 118, 123, 128, 133, 138, 143, 148, 153, 158, 163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 213, 218, 223, 228, 233, 238, 243, 248, 253, 258, 263, 268, 273, 278, 283
Offset: 0
- Elwyn R. Berlekamp, John Conway, and Richard K. Guy, Winning Ways for your Mathematical Plays, A K Peters, 2001.
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- Teena Gerhardt and Brady Haran, Brussels Sprouts, Numberphile video (2014).
- Lancelot Hogben, Choice and Chance by Cardpack and Chessboard, Vol. 1, Max Parrish and Co, London, 1950, p. 36.
- Tanya Khovanova, Recursive Sequences.
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Cf. similar sequences with closed form (2*k-1)*n+k listed in
A269044.
A017029
a(n) = 7*n + 4.
Original entry on oeis.org
4, 11, 18, 25, 32, 39, 46, 53, 60, 67, 74, 81, 88, 95, 102, 109, 116, 123, 130, 137, 144, 151, 158, 165, 172, 179, 186, 193, 200, 207, 214, 221, 228, 235, 242, 249, 256, 263, 270, 277, 284, 291, 298, 305, 312, 319, 326, 333, 340, 347, 354, 361, 368, 375, 382
Offset: 0
Cf. similar sequences with closed form (2*k-1)*n+k listed in
A269044.
-
[7*n + 4: n in [0..60]]; // Vincenzo Librandi, Jun 18 2011
-
Range[4,1000,7] (* Vladimir Joseph Stephan Orlovsky, Jun 25 2009 *)
CoefficientList[Series[(3*x + 4)/(1 - x)^2, {x, 0, 60}], x] (* Vincenzo Librandi, Jan 27 2013 *)
LinearRecurrence[{2,-1},{4,11},60] (* Harvey P. Dale, Mar 27 2025 *)
-
a(n)=7*n+4 \\ Charles R Greathouse IV, Jul 10 2016
A017221
a(n) = 9*n + 5.
Original entry on oeis.org
5, 14, 23, 32, 41, 50, 59, 68, 77, 86, 95, 104, 113, 122, 131, 140, 149, 158, 167, 176, 185, 194, 203, 212, 221, 230, 239, 248, 257, 266, 275, 284, 293, 302, 311, 320, 329, 338, 347, 356, 365, 374, 383, 392, 401, 410, 419, 428, 437, 446, 455, 464, 473, 482
Offset: 0
- R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section D5.
Sequences of the form (9*n+5)^k: this sequence (k=1),
A017222 (k=2),
A017223 (k=3),
A017224 (k=4),
A017225 (k=5),
A017226 (k=6),
A017227 (k=7),
A017228 (k=8),
A017229 (k=9),
A017230 (k=10),
A017231 (k=11).
Cf. similar sequences with closed form (2*k-1)*n+k listed in
A269044.
-
[9*n+5: n in [0..60]]; // Vincenzo Librandi, Jul 24 2011
-
seq(9*w+5, w=0..100); # Matt C. Anderson, May 18 2017
-
Range[5, 1000, 9] (* Vladimir Joseph Stephan Orlovsky, May 28 2011 *)
9*Range[0,60]+5 (* or *) LinearRecurrence[{2,-1},{5,14},60] (* Harvey P. Dale, Jul 05 2021 *)
-
forstep(n=5,500,9,print1(n", ")) \\ Charles R Greathouse IV, May 28 2011
-
[9*n+5 for n in range(51)] # G. C. Greubel, Jan 06 2023
A017461
a(n) = 11*n + 6.
Original entry on oeis.org
6, 17, 28, 39, 50, 61, 72, 83, 94, 105, 116, 127, 138, 149, 160, 171, 182, 193, 204, 215, 226, 237, 248, 259, 270, 281, 292, 303, 314, 325, 336, 347, 358, 369, 380, 391, 402, 413, 424, 435, 446, 457, 468, 479, 490, 501, 512, 523, 534, 545, 556, 567, 578, 589
Offset: 0
Cf. similar sequences with closed form (2*k-1)*n+k listed in
A269044.
Powers of the form (11*n+6)^m: this sequence (m=1),
A017462 (m=2),
A017463 (m=3),
A017464 (m=4),
A017465 (m=5),
A017466 (m=6),
A017467 (m=7),
A017468 (m=8),
A017469 (m=9),
A017470 (m=10),
A017471 (m=11),
A017472 (m=12).
-
List([0..60], n-> 11*n+6); # G. C. Greubel, Sep 19 2019
-
[11*n+6: n in [0..60]]; // Vincenzo Librandi, Sep 03 2011
-
seq(11*n+6, n=0..60); # G. C. Greubel, Sep 19 2019
-
Range[6, 1000, 11] (* Vladimir Joseph Stephan Orlovsky, May 28 2011 *)
LinearRecurrence[{2,-1},{6,17},60] (* or *) NestList[11 + #&, 6, 60] (* Harvey P. Dale, Apr 14 2015 *)
-
a(n)=11*n+6 \\ Charles R Greathouse IV, Oct 07 2015
-
[11*n+6 for n in (0..60)] # G. C. Greubel, Sep 19 2019
A154609
a(n) = 13*n + 5.
Original entry on oeis.org
5, 18, 31, 44, 57, 70, 83, 96, 109, 122, 135, 148, 161, 174, 187, 200, 213, 226, 239, 252, 265, 278, 291, 304, 317, 330, 343, 356, 369, 382, 395, 408, 421, 434, 447, 460, 473, 486, 499, 512, 525, 538, 551, 564, 577, 590, 603, 616, 629, 642, 655, 668, 681, 694
Offset: 0
-
I:=[5, 18]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..50]]; // Vincenzo Librandi, Feb 26 2012
-
Range[5, 1000, 13] (* Vladimir Joseph Stephan Orlovsky, May 31 2011 *)
CoefficientList[Series[(8 x + 5)/(1 - x)^2, {x, 0, 60}], x] (* Vincenzo Librandi, Feb 26 2012 *)
-
a(n)=13*n+5 \\ Charles R Greathouse IV, Dec 28 2011
-
[13*n+5 for n in range(61)] # G. C. Greubel, May 31 2024
A269100
a(n) = 13*n + 11.
Original entry on oeis.org
11, 24, 37, 50, 63, 76, 89, 102, 115, 128, 141, 154, 167, 180, 193, 206, 219, 232, 245, 258, 271, 284, 297, 310, 323, 336, 349, 362, 375, 388, 401, 414, 427, 440, 453, 466, 479, 492, 505, 518, 531, 544, 557, 570, 583, 596, 609, 622, 635, 648, 661, 674, 687, 700, 713, 726, 739
Offset: 0
Similar sequences of the type k*n+k-2:
A023443 (k=1),
A005843 (k=2),
A016777 (k=3),
A016825 (k=4),
A016885 (k=5),
A016957 (k=6),
A017041 (k=7),
A017137 (k=8),
A017245 (k=9),
A017365 (k=10),
A017497 (k=11),
A017641 (k=12).
-
[13*n+11: n in [0..60]];
-
13 Range[0,60] + 11
Range[11, 800, 13]
Table[13 n + 11, {n, 0, 60}] (* Bruno Berselli, Feb 22 2016 *)
LinearRecurrence[{2,-1},{11,24},60] (* Harvey P. Dale, Jun 14 2023 *)
-
makelist(13*n+11, n, 0, 60);
-
vector(60, n, n--; 13*n+11)
-
[13*n+11 for n in range(61)]
-
[13*n+11 for n in range(61)]
A186113
a(n) = 13*n + 6.
Original entry on oeis.org
6, 19, 32, 45, 58, 71, 84, 97, 110, 123, 136, 149, 162, 175, 188, 201, 214, 227, 240, 253, 266, 279, 292, 305, 318, 331, 344, 357, 370, 383, 396, 409, 422, 435, 448, 461, 474, 487, 500, 513, 526, 539, 552, 565, 578, 591, 604, 617, 630, 643, 656, 669, 682
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- G. E. Andrews, The number of smallest parts in the partitions of n, J. Reine Angew. Math. 624 (2008) 133
- Amanda Folsom and Ken Ono, The spt-function of Andrews, Proc. Natl. Acad. Sci. USA 105 (51) (2008) 20152-20156.
- Ken Ono, Congruences for the Andrews spt-function, Proc. Natl. Acad. Sci. USA 108 (2011) 473-476.
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
-
[13*n+6: n in [0..60]]; // G. C. Greubel, May 31 2024
-
Range[6, 1000, 13] (* Vladimir Joseph Stephan Orlovsky, May 31 2011 *)
LinearRecurrence[{2,-1},{6,19},60] (* Harvey P. Dale, May 12 2023 *)
-
[13*n+6 for n in range(61)] # G. C. Greubel, May 31 2024
A127547
a(n) = 13*n + 4.
Original entry on oeis.org
4, 17, 30, 43, 56, 69, 82, 95, 108, 121, 134, 147, 160, 173, 186, 199, 212, 225, 238, 251, 264, 277, 290, 303, 316, 329, 342, 355, 368, 381, 394, 407, 420, 433, 446, 459, 472, 485, 498, 511, 524, 537, 550, 563, 576, 589, 602, 615, 628, 641, 654, 667, 680, 693, 706, 719
Offset: 0
- P. Sakar, "A Brief History of Cellular Automata," ACM Computing Surveys, vol. 32, pp. 80-107, 2000.
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- C. Langton, Studying Artificial Life with Cellular Automata, Physica D: Nonlinear Phenomena, vol. 22, pp. 120-149, 1986.
- James Propp, Further Ant-ics, Mathematical Intelligencer, 16 pp. 37-42, 1994.
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
A153384
Numbers n such that 24*n+1 is not prime.
Original entry on oeis.org
0, 1, 2, 5, 6, 7, 9, 11, 12, 15, 16, 20, 21, 22, 23, 26, 27, 29, 30, 31, 33, 34, 35, 36, 37, 38, 40, 41, 44, 45, 46, 49, 51, 53, 56, 57, 58, 59, 60, 61, 63, 64, 65, 66, 68, 70, 71, 72, 76, 77, 79, 80, 81, 82, 85, 86, 91, 92, 93, 94, 96, 97, 98, 100, 101, 102
Offset: 1
Triangle begins:
*;
*,1;
*,*,2;
*,*,*,*;
*,*,*,*,5;
*,*,*,*,*,7;
*,*,*,*,*,*,*;
*,*,*,*,*,*,*,12;
*,*,*,*,*,*,*,*,15;
*,*,*,*,*,*,*,*,*,*;
*,*,*,*,*,*,*,*,*,*,22; etc.
where * marks the non-integer values of (2*h*k + k + h)/12 with h >= k >= 1. - _Vincenzo Librandi_, Jan 14 2013
Showing 1-10 of 12 results.
Comments