cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 24 results. Next

A017173 a(n) = 9*n + 1.

Original entry on oeis.org

1, 10, 19, 28, 37, 46, 55, 64, 73, 82, 91, 100, 109, 118, 127, 136, 145, 154, 163, 172, 181, 190, 199, 208, 217, 226, 235, 244, 253, 262, 271, 280, 289, 298, 307, 316, 325, 334, 343, 352, 361, 370, 379, 388, 397, 406, 415, 424, 433, 442, 451, 460, 469, 478
Offset: 0

Views

Author

Keywords

Comments

Also all the numbers with digital root 1; A010888(a(n)) = 1. - Rick L. Shepherd, Jan 12 2009
A116371(a(n)) = A156144(a(n)); positions where records occur in A156144: A156145(n+1) = A156144(a(n)). - Reinhard Zumkeller, Feb 05 2009
If A=[A147296] 9*n^2+2*n (n>0, 11, 40, 87, ...); Y=[A010701] 3 (3, 3, 3, ...); X=[A017173] 9*n+1 (n>0, 10, 19, 28, ...), we have, for all terms, Pell's equation X^2 - A*Y^2 = 1. Example: 10^2 - 11*3^2 = 1; 19^2 - 40*3^2 = 1; 28^2 - 87*3^2 = 1. - Vincenzo Librandi, Aug 01 2010

Crossrefs

Cf. A093644 ((9,1) Pascal, column m=1).
Numbers with digital root m: this sequence (m=1), A017185 (m=2), A017197 (m=3), A017209 (m=4), A017221 (m=5), A017233 (m=6), A017245 (m=7), A017257 (m=8), A008591 (m=9).

Programs

Formula

G.f.: (1 + 8*x)/(1 - x)^2.
a(n) = 2*a(n-1) - a(n-2) with a(0)=1, a(1)=10. - Vincenzo Librandi, Aug 01 2010
E.g.f.: exp(x)*(1 + 9*x). - Stefano Spezia, Apr 20 2023
a(n) = A016777(3*n). - Elmo R. Oliveira, Apr 12 2025

A017233 a(n) = 9*n + 6.

Original entry on oeis.org

6, 15, 24, 33, 42, 51, 60, 69, 78, 87, 96, 105, 114, 123, 132, 141, 150, 159, 168, 177, 186, 195, 204, 213, 222, 231, 240, 249, 258, 267, 276, 285, 294, 303, 312, 321, 330, 339, 348, 357, 366, 375, 384, 393, 402, 411, 420, 429, 438, 447, 456, 465, 474, 483
Offset: 0

Views

Author

David J. Horn and Laura Krebs Gordon (lkg615(AT)verizon.net), 1985

Keywords

Comments

General form: (q*n-1)*q, cf. A017233 (q=3), A098502 (q=4). - Vladimir Joseph Stephan Orlovsky, Feb 16 2009
Numbers whose digital root is 6; that is, A010888(a(n)) = 6. (Ball essentially says that Iamblichus (circa 350) announced that a number equal to the sum of three integers 3*n, 3*n - 1, and 3*n - 2 has 6 as what is now called the number's digital root.) - Rick L. Shepherd, Apr 01 2014

References

  • W. W. R. Ball, A Short Account of the History of Mathematics, Sterling Publishing Company, Inc., 2001 (Facsimile Edition) [orig. pub. 1912], pages 110-111.

Crossrefs

Programs

Formula

G.f.: 3*(2+x)/(x-1)^2. - R. J. Mathar, Mar 20 2018
Sum_{n>=0} (-1)^n/a(n) = sqrt(3)*Pi/27 - log(2)/9. - Amiram Eldar, Dec 12 2021
E.g.f.: 3*exp(x)*(2 + 3*x). - Stefano Spezia, Dec 07 2024
From Elmo R. Oliveira, Apr 10 2025: (Start)
a(n) = 3*A016789(n) = A019557(n+1)/2.
a(n) = 2*a(n-1) - a(n-2). (End)

A269044 a(n) = 13*n + 7.

Original entry on oeis.org

7, 20, 33, 46, 59, 72, 85, 98, 111, 124, 137, 150, 163, 176, 189, 202, 215, 228, 241, 254, 267, 280, 293, 306, 319, 332, 345, 358, 371, 384, 397, 410, 423, 436, 449, 462, 475, 488, 501, 514, 527, 540, 553, 566, 579, 592, 605, 618, 631, 644, 657, 670, 683, 696, 709, 722, 735
Offset: 0

Views

Author

Bruno Berselli, Feb 18 2016

Keywords

Comments

After 7 (which corresponds to n=0), all terms belong to A090767 because a(n) = 3*n*2*1 + 2*(n*2+2*1+n*1) + (n+2+1).
This sequence is related to A152741 by the recurrence A152741(n+1) = (n+1)*a(n+1) - Sum_{k = 0..n} a(k).
Any square mod 13 is one of 0, 1, 3, 4, 9, 10 or 12 (A010376) but not 7, and for this reason there are no squares in the sequence. Likewise, any cube mod 13 is one of 0, 1, 5, 8 or 12, therefore no a(k) is a cube.
The sum of the squares of any two terms of the sequence is also a term of the sequence, that is: a(h)^2 + a(k)^2 = a(h*(13*h+14) + k*(13*k+14) + 7). Therefore: a(h)^2 + a(k)^2 > a(a( h*(h+1) + k*(k+1) )) for h+k > 0.
The primes of the sequence are listed in A140371.

Crossrefs

Cf. A010376, A022271 (partial sums), A088227, A090767, A140371, A152741.
Similar sequences with closed form (2*k-1)*n+k: A001489 (k=0), A000027 (k=1), A016789 (k=2), A016885 (k=3), A017029 (k=4), A017221 (k=5), A017461 (k=6), this sequence (k=7), A164284 (k=8).
Sequences of the form 13*n+q: A008595 (q=0), A190991 (q=1), A153080 (q=2), A127547 (q=4), A154609 (q=5), A186113 (q=6), this sequence (q=7), A269100 (q=11).

Programs

  • Magma
    [13*n+7: n in [0..60]];
    
  • Mathematica
    13 Range[0, 60] + 7 (* or *) Range[7, 800, 13] (* or *) Table[13 n + 7, {n, 0, 60}]
    LinearRecurrence[{2, -1}, {7, 20}, 60] (* Vincenzo Librandi, Feb 19 2016 *)
  • Maxima
    makelist(13*n+7, n, 0, 60);
    
  • PARI
    vector(60, n, n--; 13*n+7)
    
  • Sage
    [13*n+7 for n in (0..60)]

Formula

G.f.: (7 + 6*x)/(1 - x)^2.
a(n) = A088227(4*n+3).
a(n) = -A186113(-n-1).
Sum_{i=h..h+13*k} a(i) = a(h*(13*k + 1) + k*(169*k + 27)/2).
Sum_{i>=0} 1/a(i)^2 = 0.0257568950542502716970... = polygamma(1, 7/13)/13^2.
E.g.f.: exp(x)*(7 + 13*x). - Stefano Spezia, Aug 02 2021

A247682 Odd composite numbers congruent to 5 modulo 9.

Original entry on oeis.org

77, 95, 185, 203, 221, 275, 329, 365, 437, 455, 473, 527, 545, 581, 635, 671, 689, 707, 725, 779, 815, 833, 851, 869, 905, 923, 959, 995, 1067, 1085, 1121, 1139, 1157, 1175, 1211, 1247, 1265, 1337, 1355, 1391, 1445, 1463, 1517, 1535, 1589
Offset: 1

Views

Author

Odimar Fabeny, Sep 22 2014

Keywords

Comments

Subsequence of A017221 (9n + 5).

Crossrefs

Programs

  • Mathematica
    Select[18Range[100] + 5, Not[PrimeQ[#]] &] (* Alonso del Arte, Sep 25 2014 *)
    Select[Range[5,2000,18],CompositeQ] (* Harvey P. Dale, Feb 21 2016 *)
  • PARI
    lista(nn) = {forcomposite(n=1, nn, if ((n % 2) && ((n % 9) == 5), print1(n, ", ")); ); } \\ Michel Marcus, Sep 22 2014

A144650 Triangle read by rows where T(m,n) = 2m*n + m + n + 1.

Original entry on oeis.org

5, 8, 13, 11, 18, 25, 14, 23, 32, 41, 17, 28, 39, 50, 61, 20, 33, 46, 59, 72, 85, 23, 38, 53, 68, 83, 98, 113, 26, 43, 60, 77, 94, 111, 128, 145, 29, 48, 67, 86, 105, 124, 143, 162, 181, 32, 53, 74, 95, 116, 137, 158, 179, 200, 221, 35, 58, 81, 104, 127, 150, 173, 196, 219, 242, 265
Offset: 1

Views

Author

Vincenzo Librandi, Jan 13 2009

Keywords

Comments

First column: A016789, second column: A016885, third column: A017029, fourth column: A017221, fifth column: A017461. - Vincenzo Librandi, Nov 21 2012

Examples

			Triangle begins:
   5;
   8, 13;
  11, 18, 25;
  14, 23, 32, 41;
  17, 28, 39, 50,  61;
  20, 33, 46, 59,  72,  85;
  23, 38, 53, 68,  83,  98, 113;
  26, 43, 60, 77,  94, 111, 128, 145;
  29, 48, 67, 86, 105, 124, 143, 162, 181;
  32, 53, 74, 95, 116, 137, 158, 179, 200, 221; etc.
		

Crossrefs

Columns k: A016789 (k=1), A016885 (k=2), A017029 (k=3), A017221 (k=4), A017461 (k=5).

Programs

  • Magma
    [2*n*k + n + k + 1: k in [1..n], n in [1..11]]; // Vincenzo Librandi, Nov 21 2012
    
  • Mathematica
    T[n_,k_]:= 2 n*k + n + k + 1; Table[T[n, k], {n, 11}, {k, n}]//Flatten (* Vincenzo Librandi, Nov 21 2012 *)
  • SageMath
    flatten([[2*n*k+n+k+1 for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, Oct 14 2023

Formula

Sum_{n=1..m} T(m, n) = m*(2*m+3)*(m+1)/2 = A160378(n+1) (row sums). - R. J. Mathar, Jan 15 2009, Jan 05 2011
From G. C. Greubel, Oct 14 2023: (Start)
T(n, n) = A001844(n).
T(n, n-1) = A001105(n), n >= 2.
T(n, n-2) = A142463(n-1), n >= 3.
T(n, n-3) = (-1)*A147973(n+2), n >= 4.
Sum_{k=1..n} (-1)^k*T(n, k) = (-1)^n*A007742(floor((n+1)/2)).
G.f.: x*y*(5 - 2*x - 2*x*y - 2*x^2*y + x^2*y^2)/((1-x)^2*(1-x*y)^3). (End)

A017222 a(n) = (9*n + 5)^2.

Original entry on oeis.org

25, 196, 529, 1024, 1681, 2500, 3481, 4624, 5929, 7396, 9025, 10816, 12769, 14884, 17161, 19600, 22201, 24964, 27889, 30976, 34225, 37636, 41209, 44944, 48841, 52900, 57121, 61504, 66049, 70756
Offset: 0

Views

Author

Keywords

Crossrefs

Sequences of the form (m*n+5)^2: A010864 (m=0), A000290 (m=1), A016754 (m=2), A016790 (m=3), A016814 (m=4), A016850 (m=5), A016970 (m=6), A017042 (m=7), A017126 (m=8), this sequence (m=9), A017330 (m=10), A017450 (m=11), A017582 (m=12).

Programs

Formula

a(n) = A017221(n)^2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, May 22 2012
G.f.: (25 + 121*x + 16*x^2)/(1-x)^3. - R. J. Mathar, Mar 20 2018
From G. C. Greubel, Dec 29 2022: (Start)
a(2*n+1) = 4*A017246(n).
a(n) = a(n-1) + 9*(18*n + 1).
E.g.f.: (25 + 171*x + 81*x^2)*exp(x). (End)

A017225 a(n) = (9*n + 5)^5.

Original entry on oeis.org

3125, 537824, 6436343, 33554432, 115856201, 312500000, 714924299, 1453933568, 2706784157, 4704270176, 7737809375, 12166529024, 18424351793, 27027081632, 38579489651, 53782400000, 73439775749
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A000584 (n^5), A017221 (9*n+5),

Programs

Formula

G.f.: (3125 + 519074*x + 3256274*x^2 + 2941234*x^3 + 365149*x^4 + 1024*x^5)/(x-1)^6. - R. J. Mathar, Mar 20 2018

A082286 a(n) = 18*n + 10.

Original entry on oeis.org

10, 28, 46, 64, 82, 100, 118, 136, 154, 172, 190, 208, 226, 244, 262, 280, 298, 316, 334, 352, 370, 388, 406, 424, 442, 460, 478, 496, 514, 532, 550, 568, 586, 604, 622, 640, 658, 676, 694, 712, 730, 748, 766, 784, 802, 820, 838, 856, 874, 892, 910, 928, 946
Offset: 0

Views

Author

Cino Hilliard, May 10 2003

Keywords

Comments

Solutions to (11^x + 13^x) mod 19 = 17.

Crossrefs

Programs

Formula

a(n) = A006370(A016945(n)). - Reinhard Zumkeller, Apr 17 2008
a(n) = 2*A017221(n). - Michel Marcus, Feb 15 2014
a(n) = A060544(n+2) - 9*A000217(n-1). - Leo Tavares, Oct 15 2022
From Elmo R. Oliveira, Apr 08 2024: (Start)
G.f.: 2*(5+4*x)/(1-x)^2.
E.g.f.: 2*exp(x)*(5 + 9*x).
a(n) = 2*a(n-1) - a(n-2) for n >= 2.
a(n) = 2*(A022267(n+1) - A022267(n)). (End)

Extensions

More terms from Reinhard Zumkeller, Apr 17 2008

A154277 a(n) = 81*n^2 - 72*n + 17.

Original entry on oeis.org

17, 26, 197, 530, 1025, 1682, 2501, 3482, 4625, 5930, 7397, 9026, 10817, 12770, 14885, 17162, 19601, 22202, 24965, 27890, 30977, 34226, 37637, 41210, 44945, 48842, 52901, 57122, 61505, 66050, 70757, 75626, 80657, 85850, 91205, 96722
Offset: 0

Views

Author

Vincenzo Librandi, Jan 06 2009

Keywords

Comments

The identity (81*n^2 + 90*n + 26)^2 - (9*n^2 + 10*n + 3)*(27*n + 15)^2 = 1 can be written as a(n+1)^2 - A154254(n+1)*A154267(n)^2 = 1. - Vincenzo Librandi, Feb 03 2012

Crossrefs

Programs

  • Magma
    I:=[26, 197, 530]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 02 2012
    
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {26, 197, 530}, 40] (* Vincenzo Librandi, Feb 02 2012 *)
    Table[81n^2-72n+17,{n,0,40}] (* Harvey P. Dale, Oct 16 2022 *)
  • PARI
    for(n=0, 22, print1(81*n^2 - 72*n + 17", ")); \\ Vincenzo Librandi, Feb 02 2012

Formula

G.f.: (17 - 25*x + 170*x^2)/(1-x)^3. - Vincenzo Librandi, Feb 02 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Feb 02 2012
a(n) = A017221(n-1)^2 + 1 with A017221(-1) = -4. - Bruno Berselli, Feb 02 2012
E.g.f.: (17 + 9*x + 81*x^2)*exp(x). - G. C. Greubel, Sep 09 2016

Extensions

92205 replaced by 91205 - R. J. Mathar, Jan 07 2009
Edited by Charles R Greathouse IV, Aug 09 2010

A017223 a(n) = (9*n+5)^3.

Original entry on oeis.org

125, 2744, 12167, 32768, 68921, 125000, 205379, 314432, 456533, 636056, 857375, 1124864, 1442897, 1815848, 2248091, 2744000, 3307949, 3944312, 4657463, 5451776, 6331625, 7301384, 8365427
Offset: 0

Views

Author

Keywords

Crossrefs

Sequences of the form (9*n+5)^k: A017221 (k=1), A017222 (k=2), this sequence (k=3), A017224 (k=4), A017225 (k=5), A017226 (k=6), A017227 (k=7), A017228 (k=8), A017229 (k=9), A017230 (k=10), A017231 (k=11).

Programs

Formula

From Chai Wah Wu, Jul 14 2016: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 3.
G.f.: (125 + 2244*x + 1941*x^2 + 64*x^3)/(1 - x)^4. (End)
E.g.f.: (125 + 2619*x + 3402*x^2 + 729*x^3)*exp(x). - G. C. Greubel, Jan 06 2023
Showing 1-10 of 24 results. Next