cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A008585 a(n) = 3*n.

Original entry on oeis.org

0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 75, 78, 81, 84, 87, 90, 93, 96, 99, 102, 105, 108, 111, 114, 117, 120, 123, 126, 129, 132, 135, 138, 141, 144, 147, 150, 153, 156, 159, 162, 165, 168, 171, 174, 177
Offset: 0

Views

Author

Keywords

Comments

If n != 1 and n^2+2 is prime then n is a member of this sequence. - Cino Hilliard, Mar 19 2007
Multiples of 3. Positive members of this sequence are the third transversal numbers (or 3-transversal numbers): Numbers of the 3rd column of positive numbers in the square array of nonnegative and polygonal numbers A139600. Also, numbers of the 3rd column in the square array A057145. - Omar E. Pol, May 02 2008
Numbers n for which polynomial 27*x^6-2^n is factorizable. - Artur Jasinski, Nov 01 2008
1/7 in base-2 notation = 0.001001001... = 1/2^3 + 1/2^6 + 1/2^9 + ... - Gary W. Adamson, Jan 24 2009
A165330(a(n)) = 153 for n > 0; subsequence of A031179. - Reinhard Zumkeller, Sep 17 2009
A011655(a(n)) = 0. - Reinhard Zumkeller, Nov 30 2009
A215879(a(n)) = 0. - Reinhard Zumkeller, Dec 28 2012
Moser conjectured, and Newman proved, that the terms of this sequence are more likely to have an even number of 1s in binary than an odd number. The excess is an undulating multiple of n^(log 3/log 4). See also Coquet, who refines this result. - Charles R Greathouse IV, Jul 17 2013
Integer areas of medial triangles of integer-sided triangles.
Also integer subset of A188158(n)/4.
A medial triangle MNO is formed by joining the midpoints of the sides of a triangle ABC. The area of a medial triangle is A/4 where A is the area of the initial triangle ABC. - Michel Lagneau, Oct 28 2013
From Derek Orr, Nov 22 2014: (Start)
Let b(0) = 0, and b(n) = the number of distinct terms in the set of pairwise sums {b(0), ... b(n-1)} + {b(0), ... b(n-1)}. Then b(n+1) = a(n), for n > 0.
Example: b(1) = the number of distinct sums of {0} + {0}. The only possible sum is {0} so b(1) = 1. b(2) = the number of distinct sums of {0,1} + {0,1}. The possible sums are {0,1,2} so b(2) = 3. b(3) = the number of distinct sums of {0,1,3} + {0,1,3}. The possible sums are {0, 1, 2, 3, 4, 6} so b(3) = 6. This continues and one can see that b(n+1) = a(n). (End)
Number of partitions of 6n into exactly 2 parts. - Colin Barker, Mar 23 2015
Partial sums are in A045943. - Guenther Schrack, May 18 2017
Number of edges in a maximal planar graph with n+2 vertices, n > 0 (see A008486 comments). - Jonathan Sondow, Mar 03 2018
Also numbers such that when the leftmost digit is moved to the unit's place the result is divisible by 3. - Stefano Spezia, Jul 08 2025

Examples

			G.f.: 3*x + 6*x^2 + 9*x^3 + 12*x^4 + 15*x^5 + 18*x^6 + 21*x^7 + ...
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 189.

Crossrefs

Row / column 3 of A004247 and of A325820.
Cf. A016957, A057145, A139600, A139606, A001651 (complement), A032031 (partial products), A190944 (binary), A061819 (base 4).

Programs

Formula

G.f.: 3*x/(1-x)^2. - R. J. Mathar, Oct 23 2008
a(n) = A008486(n), n > 0. - R. J. Mathar, Oct 28 2008
G.f.: A(x) - 1, where A(x) is the g.f. of A008486. - Gennady Eremin, Feb 20 2021
a(n) = Sum_{k=0..inf} A030308(n,k)*A007283(k). - Philippe Deléham, Oct 17 2011
E.g.f.: 3*x*exp(x). - Ilya Gutkovskiy, May 18 2016
From Guenther Schrack, May 18 2017: (Start)
a(3*k) = a(a(k)) = A008591(n).
a(3*k+1) = a(a(k) + 1) = a(A016777(n)) = A017197(n).
a(3*k+2) = a(a(k) + 2) = a(A016789(n)) = A017233(n). (End)

Extensions

Partially edited by Joerg Arndt, Mar 11 2010

A016789 a(n) = 3*n + 2.

Original entry on oeis.org

2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 50, 53, 56, 59, 62, 65, 68, 71, 74, 77, 80, 83, 86, 89, 92, 95, 98, 101, 104, 107, 110, 113, 116, 119, 122, 125, 128, 131, 134, 137, 140, 143, 146, 149, 152, 155, 158, 161, 164, 167, 170, 173, 176, 179
Offset: 0

Views

Author

Keywords

Comments

Except for 1, n such that Sum_{k=1..n} (k mod 3)*binomial(n,k) is a power of 2. - Benoit Cloitre, Oct 17 2002
The sequence 0,0,2,0,0,5,0,0,8,... has a(n) = n*(1 + cos(2*Pi*n/3 + Pi/3) - sqrt(3)*sin(2*Pi*n + Pi/3))/3 and o.g.f. x^2(2+x^3)/(1-x^3)^2. - Paul Barry, Jan 28 2004 [Artur Jasinski, Dec 11 2007, remarks that this should read (3*n + 2)*(1 + cos(2*Pi*(3*n + 2)/3 + Pi/3) - sqrt(3)*sin(2*Pi*(3*n + 2)/3 + Pi/3))/3.]
Except for 2, exponents e such that x^e + x + 1 is reducible. - N. J. A. Sloane, Jul 19 2005
The trajectory of these numbers under iteration of sum of cubes of digits eventually turns out to be 371 or 407 (47 is the first of the second kind). - Avik Roy (avik_3.1416(AT)yahoo.co.in), Jan 19 2009
Union of A165334 and A165335. - Reinhard Zumkeller, Sep 17 2009
a(n) is the set of numbers congruent to {2,5,8} mod 9. - Gary Detlefs, Mar 07 2010
It appears that a(n) is the set of all values of y such that y^3 = k*n + 2 for integer k. - Gary Detlefs, Mar 08 2010
These numbers do not occur in A000217 (triangular numbers). - Arkadiusz Wesolowski, Jan 08 2012
A089911(2*a(n)) = 9. - Reinhard Zumkeller, Jul 05 2013
Also indices of even Bell numbers (A000110). - Enrique Pérez Herrero, Sep 10 2013
Central terms of the triangle A108872. - Reinhard Zumkeller, Oct 01 2014
A092942(a(n)) = 1 for n > 0. - Reinhard Zumkeller, Dec 13 2014
a(n-1), n >= 1, is also the complex dimension of the manifold E(S), the set of all second-order irreducible Fuchsian differential equations defined on P^1 = C U {oo}, having singular points at most in S = {a_1, ..., a_n, a_{n+1} = oo}, a subset of P^1. See the Iwasaki et al. reference, Proposition 2.1.3., p. 149. - Wolfdieter Lang, Apr 22 2016
Except for 2, exponents for which 1 + x^(n-1) + x^n is reducible. - Ron Knott, Sep 16 2016
The reciprocal sum of 8 distinct items from this sequence can be made equal to 1, with these terms: 2, 5, 8, 14, 20, 35, 41, 1640. - Jinyuan Wang, Nov 16 2018
There are no positive integers x, y, z such that 1/a(x) = 1/a(y) + 1/a(z). - Jinyuan Wang, Dec 31 2018
As a set of positive integers, it is the set sum S + S where S is the set of numbers in A016777. - Michael Somos, May 27 2019
Interleaving of A016933 and A016969. - Leo Tavares, Nov 16 2021
Prepended with {1}, these are the denominators of the elements of the 3x+1 semigroup, the numerators being A005408 prepended with {2}. See Applegate and Lagarias link for more information. - Paolo Xausa, Nov 20 2021
This is also the maximum number of moves starting with n + 1 dots in the game of Sprouts. - Douglas Boffey, Aug 01 2022 [See the Wikipedia link. - Wolfdieter Lang, Sep 29 2022]
a(n-2) is the maximum sum of the span (or L(2,1)-labeling number) of a graph of order n and its complement. The extremal graphs are stars and their complements. For example, K_{1,2} has span 3, and K_2 has span 2. Thus a(3-1) = 5. - Allan Bickle, Apr 20 2023

Examples

			G.f. = 2 + 5*x + 8*x^2 + 11*x^3 + 14*x^4 + 17*x^5 + 20*x^6 + ... - _Michael Somos_, May 27 2019
		

References

  • K. Iwasaki, H. Kimura, S. Shimomura and M. Yoshida, From Gauss to Painlevé, Vieweg, 1991. p. 149.
  • Konrad Knopp, Theory and Application of Infinite Series, Dover, p. 269

Crossrefs

First differences of A005449.
Cf. A087370.
Cf. similar sequences with closed form (2*k-1)*n+k listed in A269044.

Programs

Formula

G.f.: (2+x)/(1-x)^2.
a(n) = 3 + a(n-1).
a(n) = 1 + A016777(n).
a(n) = A124388(n)/9.
a(n) = A125199(n+1,1). - Reinhard Zumkeller, Nov 24 2006
Sum_{n>=1} (-1)^n/a(n) = (1/3)*(Pi/sqrt(3) - log(2)). - Benoit Cloitre, Apr 05 2002
1/2 - 1/5 + 1/8 - 1/11 + ... = (1/3)*(Pi/sqrt(3) - log 2). [Jolley] - Gary W. Adamson, Dec 16 2006
Sum_{n>=0} 1/(a(2*n)*a(2*n+1)) = (Pi/sqrt(3) - log 2)/9 = 0.12451569... (see A196548). [Jolley p. 48 eq (263)]
a(n) = 2*a(n-1) - a(n-2); a(0)=2, a(1)=5. - Philippe Deléham, Nov 03 2008
a(n) = 6*n - a(n-1) + 1 with a(0)=2. - Vincenzo Librandi, Aug 25 2010
Conjecture: a(n) = n XOR A005351(n+1) XOR A005352(n+1). - Gilian Breysens, Jul 21 2017
E.g.f.: (2 + 3*x)*exp(x). - G. C. Greubel, Nov 02 2018
a(n) = A005449(n+1) - A005449(n). - Jinyuan Wang, Feb 03 2019
a(n) = -A016777(-1-n) for all n in Z. - Michael Somos, May 27 2019
a(n) = A007310(n+1) + (1 - n mod 2). - Walt Rorie-Baety, Sep 13 2021
a(n) = A000096(n+1) - A000217(n-1). See Capped Triangular Frames illustration. - Leo Tavares, Oct 05 2021

A017173 a(n) = 9*n + 1.

Original entry on oeis.org

1, 10, 19, 28, 37, 46, 55, 64, 73, 82, 91, 100, 109, 118, 127, 136, 145, 154, 163, 172, 181, 190, 199, 208, 217, 226, 235, 244, 253, 262, 271, 280, 289, 298, 307, 316, 325, 334, 343, 352, 361, 370, 379, 388, 397, 406, 415, 424, 433, 442, 451, 460, 469, 478
Offset: 0

Views

Author

Keywords

Comments

Also all the numbers with digital root 1; A010888(a(n)) = 1. - Rick L. Shepherd, Jan 12 2009
A116371(a(n)) = A156144(a(n)); positions where records occur in A156144: A156145(n+1) = A156144(a(n)). - Reinhard Zumkeller, Feb 05 2009
If A=[A147296] 9*n^2+2*n (n>0, 11, 40, 87, ...); Y=[A010701] 3 (3, 3, 3, ...); X=[A017173] 9*n+1 (n>0, 10, 19, 28, ...), we have, for all terms, Pell's equation X^2 - A*Y^2 = 1. Example: 10^2 - 11*3^2 = 1; 19^2 - 40*3^2 = 1; 28^2 - 87*3^2 = 1. - Vincenzo Librandi, Aug 01 2010

Crossrefs

Cf. A093644 ((9,1) Pascal, column m=1).
Numbers with digital root m: this sequence (m=1), A017185 (m=2), A017197 (m=3), A017209 (m=4), A017221 (m=5), A017233 (m=6), A017245 (m=7), A017257 (m=8), A008591 (m=9).

Programs

Formula

G.f.: (1 + 8*x)/(1 - x)^2.
a(n) = 2*a(n-1) - a(n-2) with a(0)=1, a(1)=10. - Vincenzo Librandi, Aug 01 2010
E.g.f.: exp(x)*(1 + 9*x). - Stefano Spezia, Apr 20 2023
a(n) = A016777(3*n). - Elmo R. Oliveira, Apr 12 2025

A002280 a(n) = 6*(10^n - 1)/9.

Original entry on oeis.org

0, 6, 66, 666, 6666, 66666, 666666, 6666666, 66666666, 666666666, 6666666666, 66666666666, 666666666666, 6666666666666, 66666666666666, 666666666666666, 6666666666666666, 66666666666666666, 666666666666666666, 6666666666666666666, 66666666666666666666, 666666666666666666666
Offset: 0

Views

Author

Keywords

Comments

a(n-1) = number of Fibonacci numbers F(k), k <= 10^n, which end in 0. a(1)=6 because there are 6 Fibonacci numbers up to 10^2 which end in 0. - Shyam Sunder Gupta and Benoit Cloitre, Aug 15 2002
a(n) is the total number of holes in a certain triangle fractal (start with 10 triangles, 6 holes) after n iterations. See illustration in links. - Kival Ngaokrajang, Feb 21 2015

Crossrefs

Programs

Formula

a(n) = 6*A002275(n).
From Jaume Oliver Lafont, Feb 03 2009: (Start)
G.f.: 6*x/((1-x)*(1-10*x)).
a(n) = 11*a(n-1) - 10*a(n-2) with a(0)=0, a(1)=6. (End)
a(n) = A178633(n)/A002283(n). - Reinhard Zumkeller, May 31 2010
a(n) = a(n-1) + 6*10^(n-1) with a(0)=0. - Vincenzo Librandi, Jul 22 2010
E.g.f.: 2*exp(x)*(exp(9*x) - 1)/3. - Stefano Spezia, Sep 13 2023
From Elmo R. Oliveira, Jul 21 2025: (Start)
a(n) = A073551(n+1)/2 for n >= 1.
a(n) = A010785(A017233(n-1)) for n >= 1. (End)

A017245 a(n) = 9*n + 7.

Original entry on oeis.org

7, 16, 25, 34, 43, 52, 61, 70, 79, 88, 97, 106, 115, 124, 133, 142, 151, 160, 169, 178, 187, 196, 205, 214, 223, 232, 241, 250, 259, 268, 277, 286, 295, 304, 313, 322, 331, 340, 349, 358, 367, 376, 385, 394, 403, 412, 421, 430, 439, 448, 457, 466, 475, 484
Offset: 0

Views

Author

Keywords

Comments

Numbers whose digital root is 7. - Halfdan Skjerning, Mar 15 2018

Crossrefs

Programs

Formula

a(n)^2 = A156676(n+1) + A017137(n). - Reinhard Zumkeller, Jul 13 2010
From Vincenzo Librandi, Apr 30 2015: (Start)
G.f.: (7+2*x)/(1-x)^2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2. (End)
E.g.f.: exp(x)*(7 + 9*x). - Stefano Spezia, Dec 08 2024

A051062 a(n) = 16*n + 8.

Original entry on oeis.org

8, 24, 40, 56, 72, 88, 104, 120, 136, 152, 168, 184, 200, 216, 232, 248, 264, 280, 296, 312, 328, 344, 360, 376, 392, 408, 424, 440, 456, 472, 488, 504, 520, 536, 552, 568, 584, 600, 616, 632, 648, 664, 680, 696, 712, 728, 744, 760, 776, 792, 808, 824, 840
Offset: 0

Views

Author

Keywords

Comments

Apart from initial term(s), dimension of the space of weight 2n cuspidal newforms for Gamma_0(97).
n such that 32 is the largest power of 2 dividing A003629(k)^n-1 for any k. - Benoit Cloitre, Mar 23 2002
Continued fraction expansion of tanh(1/8). - Benoit Cloitre, Dec 17 2002
If Y and Z are 2-blocks of a (4n+1)-set X then a(n-1) is the number of 3-subsets of X intersecting both Y and Z. - Milan Janjic, Oct 28 2007
General form: (q*n+x)*q x=+1; q=2=A016825, q=3=A017197, q=4=A119413, ... x=-1; q=3=A017233, q=4=A098502, ... x=+2; q=4=A051062, ... - Vladimir Joseph Stephan Orlovsky, Feb 16 2009
a(n)*n+1 = (4n+1)^2 and a(n)*(n+1)+1 = (4n+3)^2 are both perfect squares. - Carmine Suriano, Jun 01 2014
For all positive integers n, there are infinitely many positive integers k such that k*n + 1 and k*(n+1) + 1 are both perfect squares. Except for 8, all the numbers of this sequence are the smallest integers k which are solutions for getting two perfect squares. Example: a(1) = 24 and 24 * 1 + 1 = 25 = 5^2, then 24 * (1+1) + 1 = 49 = 7^2. [Reference AMM] - Bernard Schott, Sep 24 2017
Numbers k such that 3^k + 1 is divisible by 17*193. - Bruno Berselli, Aug 22 2018

References

  • Letter from Gary W. Adamson concerning Prouhet-Thue-Morse sequence, Nov 11 1999.

Crossrefs

Programs

Formula

a(n) = A118413(n+1,4) for n>3. - Reinhard Zumkeller, Apr 27 2006
a(n) = 32*n - a(n-1) for n>0, a(0)=8. - Vincenzo Librandi, Aug 06 2010
A003484(a(n)) = 8; A209675(a(n)) = 9. - Reinhard Zumkeller, Mar 11 2012
A007814(a(n)) = 3; A037227(a(n)) = 7. - Reinhard Zumkeller, Jun 30 2012
a(-1 - n) = - a(n). - Michael Somos, Jun 02 2014
Sum_{n>=0} (-1)^n/a(n) = Pi/32 (A244978). - Amiram Eldar, Feb 28 2023
From Elmo R. Oliveira, Apr 16 2024: (Start)
G.f.: 8*(1+x)/(1-x)^2.
E.g.f.: 8*exp(x)*(1 + 2*x).
a(n) = 8*A005408(n) = A008598(n) + 8 = A139098(n+1) - A139098(n).
a(n) = 4*A016825(n) = 2*A017113(n) = 2*a(n-1) - a(n-2) for n >= 2. (End)
From Amiram Eldar, Nov 25 2024: (Start)
Product_{n>=0} (1 - (-1)^n/a(n)) = sqrt(2)*sin(7*Pi/32).
Product_{n>=0} (1 + (-1)^n/a(n)) = sqrt(2)*cos(7*Pi/32). (End)

A122709 a(0)=1; thereafter a(n) = 9*n - 3.

Original entry on oeis.org

1, 6, 15, 24, 33, 42, 51, 60, 69, 78, 87, 96, 105, 114, 123, 132, 141, 150, 159, 168, 177, 186, 195, 204, 213, 222, 231, 240, 249, 258, 267, 276, 285, 294, 303, 312, 321, 330, 339, 348, 357, 366, 375, 384, 393, 402, 411, 420, 429, 438, 447, 456, 465, 474, 483
Offset: 0

Views

Author

Philippe Deléham, Sep 23 2006

Keywords

Comments

Self-convolution of A122553.

Crossrefs

Cf. A017233 (9n+6), A008591, A122553.

Programs

  • GAP
    a:=[6,15];; for n in [3..60] do a[n]:=2*a[n-1]-a[n-2]; od; Concatenation([1],a); # Muniru A Asiru, Oct 21 2018
  • Maple
    seq(coeff(series(((1+2*x)/(1-x))^2,x,n+1), x, n), n = 0 .. 60); # Muniru A Asiru, Oct 21 2018
  • Mathematica
    Join[{1},LinearRecurrence[{2,-1},{6,15},60]] (* Harvey P. Dale, Jun 12 2012 *)
  • PARI
    a(n)=max(9*n-3,1) \\ Charles R Greathouse IV, Jan 17 2012
    
  • PARI
    Vec((1 + 2*x)^2 / (1 - x)^2 + O(x^100)) \\ Colin Barker, Jan 22 2018
    

Formula

a(0)=1, a(n) = 9*n - 3 = A008591(n) - 3 for n > 0.
a(n) = 2*a(n-1) - a(n-2) for n > 2; a(0)=1, a(1)=6, a(2)=15.
a(n) = a(n-1) + 9 for n > 1; a(0)=1, a(1)=6.
G.f.: ((1 + 2*x)/(1 - x))^2.
Equals binomial transform of [1, 5, 4, -4, 4, -4, 4, ...]. - Gary W. Adamson, Dec 10 2007
a(n) = A017233(n-1) for n > 0. - Georg Fischer, Oct 21 2018
E.g.f.: exp(x)*(9*x - 3) + 4. - Stefano Spezia, Mar 07 2023

Extensions

Edited by N. J. A. Sloane, Jan 23 2018

A017234 a(n) = (9*n + 6)^2.

Original entry on oeis.org

36, 225, 576, 1089, 1764, 2601, 3600, 4761, 6084, 7569, 9216, 11025, 12996, 15129, 17424, 19881, 22500, 25281, 28224, 31329, 34596, 38025, 41616, 45369, 49284, 53361, 57600, 62001, 66564, 71289
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A000290 (n^2), A017233 (9*n+6).

Programs

Formula

From R. J. Mathar, Mar 21 2016: (Start)
G.f.: ( -36 - 117*x - 9*x^2 ) / (x-1)^3.
a(n) = 9*A016790(n). (End)

A017235 a(n) = (9*n + 6)^3.

Original entry on oeis.org

216, 3375, 13824, 35937, 74088, 132651, 216000, 328509, 474552, 658503, 884736, 1157625, 1481544, 1860867, 2299968, 2803221, 3375000, 4019679, 4741632, 5545233, 6434856, 7414875, 8489664
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A000578 (n^3), A017233 (9*n+6).

Programs

  • Magma
    [(9*n+6)^3: n in [0..35]]; // Vincenzo Librandi, Jul 25 2011
  • Mathematica
    (9*Range[0,30]+6)^3 (* or *) LinearRecurrence[{4,-6,4,-1},{216,3375,13824,35937},30] (* Harvey P. Dale, Feb 14 2018 *)

Formula

G.f.: 27*(8 + 93*x + 60*x^2 + x^3)/(x-1)^4. - R. J. Mathar, Mar 20 2018

A017239 a(n) = (9*n + 6)^7.

Original entry on oeis.org

279936, 170859375, 4586471424, 42618442977, 230539333248, 897410677851, 2799360000000, 7446353252589, 17565568854912, 37725479487783, 75144747810816, 140710042265625, 250226879128704, 425927596977747
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A001015 (n^7), A017233 (9*n+6).

Programs

  • Magma
    [(9*n+6)^7: n in [0..25]]; // Vincenzo Librandi, Jul 25 2011
  • Mathematica
    (9*Range[0,20]+6)^7 (* or *) LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{279936,170859375,4586471424,42618442977,230539333248,897410677851,2799360000000,7446353252589},20] (* Harvey P. Dale, Feb 11 2015 *)

Formula

a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8); a(0)=279936, a(1)=170859375, a(2)=4586471424, a(3)=42618442977, a(4)=230539333248, a(5)=897410677851, a(6)=2799360000000, a(7)=7446353252589. - Harvey P. Dale, Feb 11 2015
Showing 1-10 of 12 results. Next