A017173
a(n) = 9*n + 1.
Original entry on oeis.org
1, 10, 19, 28, 37, 46, 55, 64, 73, 82, 91, 100, 109, 118, 127, 136, 145, 154, 163, 172, 181, 190, 199, 208, 217, 226, 235, 244, 253, 262, 271, 280, 289, 298, 307, 316, 325, 334, 343, 352, 361, 370, 379, 388, 397, 406, 415, 424, 433, 442, 451, 460, 469, 478
Offset: 0
Cf.
A093644 ((9,1) Pascal, column m=1).
-
a017173 = (+ 1) . (* 9)
a017173_list = [1, 10 ..] -- Reinhard Zumkeller, Feb 04 2014
-
Range[1, 1000, 9] (* Vladimir Joseph Stephan Orlovsky, May 28 2011 *)
LinearRecurrence[{2,-1},{1,10},60] (* Harvey P. Dale, Dec 27 2014 *)
-
forstep(n=1,500,9,print1(n", ")) \\ Charles R Greathouse IV, May 28 2011
-
[i+1 for i in range(480) if gcd(i,9) == 9] # Zerinvary Lajos, May 20 2009
A002281
a(n) = 7*(10^n - 1)/9.
Original entry on oeis.org
0, 7, 77, 777, 7777, 77777, 777777, 7777777, 77777777, 777777777, 7777777777, 77777777777, 777777777777, 7777777777777, 77777777777777, 777777777777777, 7777777777777777, 77777777777777777, 777777777777777777, 7777777777777777777, 77777777777777777777, 777777777777777777777
Offset: 0
A017137
a(n) = 8*n + 6.
Original entry on oeis.org
6, 14, 22, 30, 38, 46, 54, 62, 70, 78, 86, 94, 102, 110, 118, 126, 134, 142, 150, 158, 166, 174, 182, 190, 198, 206, 214, 222, 230, 238, 246, 254, 262, 270, 278, 286, 294, 302, 310, 318, 326, 334, 342, 350, 358, 366, 374, 382, 390, 398, 406, 414, 422, 430
Offset: 0
G.f. = 6 + 14*x + 22*x^2 + 30*x^3 + 38*x^4 + 46*x^5 + 54*x^6 + 62*x^7 + ...
-
a017137 = (+ 6) . (* 8) -- Reinhard Zumkeller, Jul 05 2013
-
[8*n+6: n in [0..60]]; // Vincenzo Librandi, Jun 07 2011
-
A017137:=n->8*n+6; seq(A017137(n), n=0..50); # Wesley Ivan Hurt, May 13 2014
-
Range[6, 1000, 8] (* Vladimir Joseph Stephan Orlovsky, May 27 2011 *)
8Range[0,60]+6 (* or *) LinearRecurrence[{2,-1},{6,14},60] (* Harvey P. Dale, Nov 14 2021 *)
-
a(n) = 8*n+6; \\ Michel Marcus, Sep 17 2015
-
Vec((6+2*x)/(1-x)^2 + O(x^100)) \\ Altug Alkan, Oct 23 2015
A056991
Numbers with digital root 1, 4, 7 or 9.
Original entry on oeis.org
1, 4, 7, 9, 10, 13, 16, 18, 19, 22, 25, 27, 28, 31, 34, 36, 37, 40, 43, 45, 46, 49, 52, 54, 55, 58, 61, 63, 64, 67, 70, 72, 73, 76, 79, 81, 82, 85, 88, 90, 91, 94, 97, 99, 100, 103, 106, 108, 109, 112, 115, 117, 118, 121, 124, 126, 127, 130, 133, 135, 136, 139, 142
Offset: 1
- R. J. Mathar, Table of n, a(n) for n = 1..22222
- H. I. Okagbue, M. O. Adamu, S. A. Iyase, and A. A. Opanuga, Sequence of Integers Generated by Summing the Digits of their Squares, Indian Journal of Science and Technology, Vol 8(15), DOI: 10.17485/ijst/2015/v8i15/69912, July 2015.
- Eric Weisstein's World of Mathematics, Square Number
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
-
seq( 3*(n-floor(n/4)) - (3-I^n-(-I)^n-(-1)^n)/2, n=1..63); # Gary Detlefs, Mar 19 2010
-
LinearRecurrence[{1,0,0,1,-1},{1,4,7,9,10},70] (* Harvey P. Dale, Aug 29 2015 *)
-
forstep(n=1,1e3,[3,3,2,1],print1(n", ")) \\ Charles R Greathouse IV, Sep 21 2012
A069403
a(n) = 2*Fibonacci(2*n+1) - 1.
Original entry on oeis.org
1, 3, 9, 25, 67, 177, 465, 1219, 3193, 8361, 21891, 57313, 150049, 392835, 1028457, 2692537, 7049155, 18454929, 48315633, 126491971, 331160281, 866988873, 2269806339, 5942430145, 15557484097, 40730022147, 106632582345, 279167724889, 730870592323, 1913444052081
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..1000
- Yurii S. Bystryk, Vitalii L. Denysenko, and Volodymyr I. Ostryk, Lune and Lens Sequences, ResearchGate preprint, 2024. See pp. 41, 56.
- J. Hietarinta and C.-M. Viallet, Singularity confinement and chaos in discrete systems, Physical Review Letters 81 (1998), pp. 326-328.
- Index entries for linear recurrences with constant coefficients, signature (4,-4,1).
-
List([0..30], n-> 2*Fibonacci(2*n+1)-1); # G. C. Greubel, Jul 11 2019
-
[2*Fibonacci(2*n+1)-1: n in [0..30]]; // Vincenzo Librandi, Apr 18 2011
-
a[n_]:= a[n] = 3a[n-1] - 3a[n-3] + a[n-4]; a[0] = 1; a[1] = 3; a[2] = 9; a[3] = 25; Table[ a[n], {n, 0, 30}]
Table[2*Fibonacci[2*n+1]-1, {n,0,30}] (* G. C. Greubel, Apr 22 2018 *)
LinearRecurrence[{4,-4,1},{1,3,9},30] (* Harvey P. Dale, Sep 22 2020 *)
-
a(n) = 2*fibonacci(2*n+1)-1 \\ Charles R Greathouse IV, Jun 11 2015
-
Vec((1-x+x^2)/((1-x)*(1-3*x+x^2)) + O(x^30)) \\ Colin Barker, Nov 02 2016
-
[2*fibonacci(2*n+1)-1 for n in (0..30)] # G. C. Greubel, Jul 11 2019
A269100
a(n) = 13*n + 11.
Original entry on oeis.org
11, 24, 37, 50, 63, 76, 89, 102, 115, 128, 141, 154, 167, 180, 193, 206, 219, 232, 245, 258, 271, 284, 297, 310, 323, 336, 349, 362, 375, 388, 401, 414, 427, 440, 453, 466, 479, 492, 505, 518, 531, 544, 557, 570, 583, 596, 609, 622, 635, 648, 661, 674, 687, 700, 713, 726, 739
Offset: 0
Similar sequences of the type k*n+k-2:
A023443 (k=1),
A005843 (k=2),
A016777 (k=3),
A016825 (k=4),
A016885 (k=5),
A016957 (k=6),
A017041 (k=7),
A017137 (k=8),
A017245 (k=9),
A017365 (k=10),
A017497 (k=11),
A017641 (k=12).
-
[13*n+11: n in [0..60]];
-
13 Range[0,60] + 11
Range[11, 800, 13]
Table[13 n + 11, {n, 0, 60}] (* Bruno Berselli, Feb 22 2016 *)
LinearRecurrence[{2,-1},{11,24},60] (* Harvey P. Dale, Jun 14 2023 *)
-
makelist(13*n+11, n, 0, 60);
-
vector(60, n, n--; 13*n+11)
-
[13*n+11 for n in range(61)]
-
[13*n+11 for n in range(61)]
A247683
Odd composite numbers congruent to 7 modulo 9.
Original entry on oeis.org
25, 115, 133, 169, 187, 205, 259, 295, 385, 403, 475, 493, 511, 529, 565, 583, 637, 655, 745, 763, 781, 799, 817, 835, 871, 889, 925, 943, 961, 979, 1015, 1105, 1141, 1159, 1177, 1195, 1267, 1285, 1339, 1357, 1375, 1393, 1411, 1465, 1501
Offset: 1
-
Select[18Range[100] + 7, Not[PrimeQ[#]] &] (* Alonso del Arte, Sep 25 2014 *)
Select[Range[1,1501,2],CompositeQ[#]&&Mod[#,9]==7&] (* or *) Select[Range[7,1501,18],CompositeQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Mar 31 2021 *)
-
lista(nn) = {forcomposite(n=1, nn, if ((n % 2) && ((n % 9) == 7), print1(n, ", ")); ); } \\ Michel Marcus, Sep 22 2014
A062725
Write 0, 1, 2, 3, 4, ... in a triangular spiral, then a(n) is the sequence found by reading the terms along the line from 0 in the direction 0, 7, ...
Original entry on oeis.org
0, 7, 23, 48, 82, 125, 177, 238, 308, 387, 475, 572, 678, 793, 917, 1050, 1192, 1343, 1503, 1672, 1850, 2037, 2233, 2438, 2652, 2875, 3107, 3348, 3598, 3857, 4125, 4402, 4688, 4983, 5287, 5600, 5922, 6253, 6593, 6942, 7300, 7667, 8043, 8428, 8822, 9225, 9637, 10058
Offset: 0
The spiral begins:
.
15
/ \
16 14
/ \
17 3 13
/ / \ \
18 4 2 12
/ / \ \
19 5 0---1 11
/ / \
20 6---7---8---9--10
.
-
a062725 n = n * (9 * n + 5) `div` 2 -- Reinhard Zumkeller, Jul 17 2014
-
s=0;lst={s};Do[s+=n++ +7;AppendTo[lst, s], {n, 0, 7!, 9}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 16 2008 *)
CoefficientList[Series[x (7 + 2 x)/(1 - x)^3, {x, 0, 45}], x] (* Michael De Vlieger, Jan 11 2020 *)
-
a(n) = n*(9*n+5)/2 \\ Charles R Greathouse IV, Apr 30 2015
Formula that confused indices corrected by
R. J. Mathar, Jun 04 2010
Original entry on oeis.org
0, 6, 21, 48, 90, 150, 231, 336, 468, 630, 825, 1056, 1326, 1638, 1995, 2400, 2856, 3366, 3933, 4560, 5250, 6006, 6831, 7728, 8700, 9750, 10881, 12096, 13398, 14790, 16275, 17856, 19536, 21318, 23205, 25200, 27306, 29526, 31863, 34320, 36900, 39606, 42441, 45408, 48510
Offset: 0
The sequence is also provided by the row sums of the following triangle (see the fourth formula above):
. 0;
. 1, 5;
. 4, 7, 10;
. 9, 11, 13, 15;
. 16, 17, 18, 19, 20;
. 25, 25, 25, 25, 25, 25;
. 36, 35, 34, 33, 32, 31, 30;
. 49, 47, 45, 43, 41, 39, 37, 35;
. 64, 61, 58, 55, 52, 49, 46, 43, 40;
. 81, 77, 73, 69, 65, 61, 57, 53, 49, 45, etc.
First column is A000290.
Second column is A027690.
Third column is included in A189834.
Main diagonal is A008587; other parallel diagonals: A016921, A017029, A017077, A017245, etc.
Diagonal 1, 11, 25, 43, 65, 91, 121, ... is A161532.
Cf. similar sequences of the type n*(n+1)*(n+k)/2:
A002411 (k=0),
A006002 (k=1),
A027480 (k=2),
A077414 (k=3, with offset 1),
A212343 (k=4, without the initial 0), this sequence (k=5).
-
[n*(n+1)*(n+5)/2: n in [0..50]];
-
Table[n (n + 1) (n + 5)/2, {n, 0, 50}]
LinearRecurrence[{4,-6,4,-1},{0,6,21,48},50] (* Harvey P. Dale, Jul 18 2019 *)
-
vector(50, n, n--; n*(n+1)*(n+5)/2)
-
[n*(n+1)*(n+5)/2 for n in (0..50)]
A156676
a(n) = 81*n^2 - 44*n + 6.
Original entry on oeis.org
6, 43, 242, 603, 1126, 1811, 2658, 3667, 4838, 6171, 7666, 9323, 11142, 13123, 15266, 17571, 20038, 22667, 25458, 28411, 31526, 34803, 38242, 41843, 45606, 49531, 53618, 57867, 62278, 66851, 71586, 76483, 81542, 86763, 92146, 97691, 103398, 109267, 115298, 121491
Offset: 0
-
[81*n^2 - 44*n + 6: n in [0..40] ];
-
A156676:=n->81*n^2-44*n+6: seq(A156676(n), n=0..100); # Wesley Ivan Hurt, Apr 26 2017
-
LinearRecurrence[{3,-3,1},{6,43,242},40]
Table[81n^2-44n+6,{n,0,40}] (* Harvey P. Dale, Oct 29 2019 *)
-
a(n)=81*n^2-44*n+6 \\ Charles R Greathouse IV, Dec 23 2011
Showing 1-10 of 20 results.
Comments