cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A085327 Duplicate of A069403.

Original entry on oeis.org

1, 3, 9, 25, 67, 177, 465, 1219, 3193, 8361, 21891, 57313, 150049, 392835, 1028457
Offset: 0

Views

Author

Keywords

A128588 Expansion of g.f. x*(1+x+x^2)/(1-x-x^2).

Original entry on oeis.org

1, 2, 4, 6, 10, 16, 26, 42, 68, 110, 178, 288, 466, 754, 1220, 1974, 3194, 5168, 8362, 13530, 21892, 35422, 57314, 92736, 150050, 242786, 392836, 635622, 1028458, 1664080, 2692538, 4356618, 7049156, 11405774, 18454930, 29860704, 48315634, 78176338
Offset: 1

Views

Author

Gary W. Adamson, Mar 11 2007

Keywords

Comments

Previous name was: A007318 * A128587.
a(n)/a(n-1) tends to phi, 1.618... = A001622.
Regardless of initial two terms, any linearly recurring sequence with signature (1,1) will yield an a(n)/a(n+1) ratio tending to phi (the Golden Ratio). - Harvey P. Dale, Mar 29 2017
Apart from the initial term, double the Fibonacci numbers. O.g.f.: x*(1+x+x^2)/(1-x-x^2). a(n) gives the number of binary strings of length n-1 avoiding the substrings 000 and 111. a(n) also gives the number of binary strings of length n-1 avoiding the substrings 010 and 101. - Peter Bala, Jan 22 2008
Row lengths of triangle A232642. - Reinhard Zumkeller, May 14 2015
a(n) is the number of binary strings of length n-1 avoiding the substrings 000 and 111. - Allan C. Wechsler, Feb 13 2025

Crossrefs

Programs

  • GAP
    Concatenation([1], List([2..40], n-> 2*Fibonacci(n))); # G. C. Greubel, Jul 10 2019
  • Haskell
    a128588 n = a128588_list !! (n-1)
    a128588_list = 1 : cows where
                       cows = 2 : 4 : zipWith (+) cows (tail cows)
    -- Reinhard Zumkeller, May 14 2015
    
  • Magma
    [1] cat [2*Fibonacci(n): n in [2..40]]; // G. C. Greubel, Jul 10 2019
    
  • Maple
    a:= n-> `if`(n<2, n, 2*(<<0|1>, <1|1>>^n)[1,2]):
    seq(a(n), n=1..50);  # Alois P. Heinz, Apr 28 2018
  • Mathematica
    nn=40; a=(1-x^3)/(1-x); b=x*(1-x^2)/(1-x); CoefficientList[Series[a^2 /(1-b^2), {x,0,nn}], x]  (* Geoffrey Critzer, Sep 01 2012 *)
    LinearRecurrence[{1,1}, {1,2,4}, 40] (* Harvey P. Dale, Mar 29 2017 *)
    Join[{1}, 2*Fibonacci[Range[2,40]]] (* G. C. Greubel, Jul 10 2019 *)
  • PARI
    {a(n) = if( n<2, n==1, 2 * fibonacci(n))}; /* Michael Somos, Jul 18 2015 */
    
  • Sage
    [1]+[2*fibonacci(n) for n in (2..40)] # G. C. Greubel, Jul 10 2019
    

Formula

G.f.: x*(1+x+x^2)/(1-x-x^2).
Binomial transform of A128587; a(n+2) = a(n+1) + a(n), n>3.
a(n) = A068922(n-1), n>2. - R. J. Mathar, Jun 14 2008
For n > 1: a(n+1) = a(n) + if a(n) odd then max{a(n),a(n-1)} else min{a(n),a(n-1)}, see also A038754. - Reinhard Zumkeller, Oct 19 2015
E.g.f.: 4*exp(x/2)*sinh(sqrt(5)*x/2)/sqrt(5) - x. - Stefano Spezia, Feb 19 2023

Extensions

New name from Joerg Arndt, Feb 16 2024

A052995 Expansion of 2*x*(1 - x)/(1 - 3*x + x^2).

Original entry on oeis.org

0, 2, 4, 10, 26, 68, 178, 466, 1220, 3194, 8362, 21892, 57314, 150050, 392836, 1028458, 2692538, 7049156, 18454930, 48315634, 126491972, 331160282, 866988874, 2269806340, 5942430146, 15557484098, 40730022148, 106632582346, 279167724890, 730870592324
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Terms >=4 give solutions x to floor(phi^2*x^2) - floor(phi*x)^2 = 5, where phi =(1 + sqrt(5))/2. - Benoit Cloitre, Mar 16 2003
Except for the first term, positive values of x (or y) satisfying x^2 - 18*x*y + y^2 + 256 = 0. - Colin Barker, Feb 14 2014
a(n+1) is the square of the distance AB, where A is the point (F(n), F(n+1)), B is the 90-degree rotation of A about the origin, and F(n)=A000045(n) are the Fibonacci numbers. - Burak Muslu, Mar 24 2021

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 30.
  • B. Muslu, Sayılar ve Bağlantılar 2, Luna, 2021, pages 60-61.

Crossrefs

Bisection of A006355.
First differences of A025169.

Programs

  • Maple
    spec := [S, S=Prod(Sequence(Union(Prod(Sequence(Z),Z),Z)),Union(Z,Z))},unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);
  • Mathematica
    LinearRecurrence[{3, -1}, {0, 2, 4}, 30] (* or *)
    Nest[Append[#, 3 #[[-1]] - #[[-2]]] &, {0, 2, 4}, 27] (* or *)
    CoefficientList[Series[-2 x (-1 + x)/(1 - 3 x + x^2), {x, 0, 29}], x] (* Michael De Vlieger, Jul 18 2018 *)
  • PARI
    concat(0, Vec(2*x*(1-x)/(1-3*x+x^2) + O(x^50))) \\ Colin Barker, Mar 30 2016
    
  • PARI
    a(n) = fibonacci(max(0,2*n-1))<<1; \\ Kevin Ryde, Mar 25 2021

Formula

G.f.: -2*x*(-1 + x)/(1 - 3*x + x^2).
a(0) = 0, a(1) = 2, a(2) = 4; for n > 0, a(n) - 3*a(n+1) + a(n+2) = 0.
a(n) = A069403(n-1)+1.
a(n) = Sum(2/5*(-1 + 4*_alpha)*_alpha^(-1-n), _alpha = RootOf(_Z^2 - 3*_Z + 1)).
a(n) = 2*Fibonacci(2*n-1) = 2*A001519(n) for n > 0. - Vladeta Jovovic, Mar 19 2003
a(n+2) = F(n)^2 + F(n+3)^2 = 2*F(n+1)^2 + 2*F(n+2)^2, where F = A000045. - N. J. A. Sloane, Feb 20 2005
a(n) = 1/2*(F(2*n+8) mod F(2*n+2)) for n > 2. - Gary Detlefs, Nov 22 2010
a(n) = F(n-3)*F(n-1) + F(n)*F(n+2) for n > 0, F(-2) = -1, F(-1) = 1. - Bruno Berselli, Nov 03 2015
a(n) = (2^(-n)*((3 - sqrt(5))^n*(1 + sqrt(5)) + (-1 + sqrt(5))*(3 + sqrt(5))^n))/sqrt(5) for n > 0. - Colin Barker, Mar 30 2016
a(n) = Fibonacci(2*n-2) + Lucas(2*n-2) for n > 0. - Bruno Berselli, Oct 13 2017
a(n) = Lucas(2*n) - Fibonacci(2*n) for n > 0. - Diego Rattaggi, Mar 08 2023

Extensions

More terms from James Sellers, Jun 05 2000

A192904 Constant term in the reduction by (x^2 -> x + 1) of the polynomial p(n,x) defined below at Comments.

Original entry on oeis.org

1, 0, 1, 5, 16, 49, 153, 480, 1505, 4717, 14784, 46337, 145233, 455200, 1426721, 4471733, 14015632, 43928817, 137684905, 431542080, 1352570689, 4239325789, 13287204352, 41645725825, 130529073953, 409113752000, 1282274186177
Offset: 0

Views

Author

Clark Kimberling, Jul 12 2011

Keywords

Comments

The titular polynomial is defined by p(n,x) = (x^2)*p(n-1,x) + x*p(n-2,x), with p(0,x) = 1, p(1,x) = x. The resulting sequence typifies a general class which we shall describe here. Suppose that u,v,a,b,c,d,e,f are numbers used to define these polynomials:
...
q(x) = x^2
s(x) = u*x + v
p(0,x) = a, p(1,x) = b*x + c
p(n,x) = d*(x^2)*p(n-1,x) + e*x*p(n-2,x) + f.
...
We shall assume that u is not 0 and that {d,e} is not {0}. The reduction of p(n,x) by the repeated substitution q(x) -> s(x), as defined and described at A192232 and A192744, has the form h(n) + k(n)*x. The numerical sequences h and k are linear recurrence sequences, formally of order 5. The Mathematica program below, with first line deleted, shows initial terms and recurrence coefficients, which imply these properties:
(1) the recurrence coefficients depend only on u,v,d,e; the parameters a,b,c,f affect only the initial terms.
(2) if e=0 or v=0, the order of recurrence is <= 3;
(3) if e=0 and v=0, the recurrence coefficients are 1+d*u^2 and -d*u^2 (cf. similar results at A192872).
...
Examples:
u v a b c d e f... seq h.....seq k
1 1 1 1 1 1 0 0... A001906..A001519
1 1 1 1 0 0 1 0... A103609..A193609
1 1 1 1 0 1 1 0... A192904..A192905
1 1 1 1 1 1 0 0... A001519..A001906
1 1 1 1 1 1 1 0... A192907..A192907
1 1 1 1 1 1 0 1... A192908..A069403
1 1 1 1 1 1 1 1... A192909..A192910
The terms of these sequences involve Fibonacci numbers, F(n)=A000045(n); e.g.,
A001906: even-indexed F(n)
A001519: odd-indexed F(n)
A103609: (1,1,1,1,2,2,3,3,5,5,8,8,...)

Examples

			The first six polynomials and reductions:
1 -> 1
x -> x
x + x^3 -> 1 + 3*x
x^2 + x^3 + x^5 -> 5 + 8*x
x^2 + 2*x^4 + x^5 + x^7 -> 16 + 25*x
x^3 + 2*x^4 + 3*x^6 + x^7 + x^9 -> 49 + 79*x, so that
A192904 = (1,0,1,5,16,49,...) and
A192905 = (0,1,3,8,25,79,...)
		

Crossrefs

Programs

  • GAP
    a:=[1,0,1,5];; for n in [5..40] do a[n]:=3*a[n-1]+a[n-3]+a[n-4]; od; a; # G. C. Greubel, Jan 10 2019
  • Magma
    m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1-x)*(1-2*x-x^2)/(1-3*x-x^3-x^4) )); // G. C. Greubel, Jan 10 2019
    
  • Mathematica
    (* To obtain general results, delete the next line. *)
    u = 1; v = 1; a = 1; b = 1; c = 0; d = 1; e = 1; f = 0;
    q = x^2; s = u*x + v; z = 24;
    p[0, x_] := a; p[1, x_] := b*x + c;
    p[n_, x_] :=  d*(x^2)*p[n - 1, x] + e*x*p[n - 2, x] + f;
    Table[Expand[p[n, x]], {n, 0, 8}]
    reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
    t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
    u0 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192904 *)
    u1 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192905 *)
    Simplify[FindLinearRecurrence[u0]] (* recurrence for 0-sequence *)
    Simplify[FindLinearRecurrence[u1]] (* recurrence for 1-sequence *)
    LinearRecurrence[{3,0,1,1}, {1,0,1,5}, 40] (* G. C. Greubel, Jan 10 2019 *)
  • PARI
    my(x='x+O('x^40)); Vec((1-x)*(1-2*x-x^2)/(1-3*x-x^3-x^4)) \\ G. C. Greubel, Jan 10 2019
    
  • Sage
    ((1-x)*(1-2*x-x^2)/(1-3*x-x^3-x^4)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jan 10 2019
    

Formula

a(n) = 3*a(n-1) + a(n-3) + a(n-4).
G.f.: (1-x)*(1-2*x-x^2)/(1-3*x-x^3-x^4). - Colin Barker, Aug 31 2012

A165278 Table read by antidiagonals: T(n, k) is the k-th number with n-1 even-indexed Fibonacci numbers in its Zeckendorf representation.

Original entry on oeis.org

2, 5, 1, 7, 3, 4, 13, 6, 9, 12, 15, 8, 11, 25, 33, 18, 10, 17, 30, 67, 88, 20, 14, 22, 32, 80, 177, 232, 34, 16, 24, 46, 85, 211, 465, 609, 36, 19, 27, 59, 87, 224, 554, 1219, 1596, 39, 21, 29, 64, 122, 229, 588, 1452, 3193, 4180, 41, 23, 31, 66, 156, 231, 601
Offset: 1

Views

Author

Clark Kimberling, Sep 13 2009

Keywords

Comments

For n>=0, row n is the monotonic sequence of positive integers m such that the number of even-indexed Fibonacci numbers in the Zeckendorf representation of m is n.
We begin the indexing at 2; that is, 1=F(2), 2=F(3), 3=F(4), 5=F(5),...
Every positive integer occurs exactly once in the array, so that as a sequence it is a permutation of the positive integers.
For counts of odd-indexed Fibonacci numbers, see A165279.
Essentially, (row 0)=A062879, (column 1)=A027941, (column 2)=A069403.

Examples

			Northwest corner:
2....5....7...13...15...18...20...34...36...
1....3....6....8...10...14...16...19...20...
4....9...11...17...22...24...27...29...31...
12..25...30...32...46...59...64...66...72...
Examples:
20=13+5+2=F(7)+F(5)+F(3), zero evens, so 20 is in row 0.
19=13+5+1=F(7)+F(5)+F(2), one even, so 19 is in row 1.
22=21+1=F(8)+F(2), two evens, so 22 is in row 2.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Module[{i = Ceiling[Log[GoldenRatio, Sqrt[5]*n]], v = {}, m = n}, While[i > 1, If[Fibonacci[i] <= m, AppendTo[v, 1]; m -= Fibonacci[i], If[v != {}, AppendTo[v, 0]]]; i--]; Total[Reverse[v][[1 ;; -1 ;; 2]]]]; T = GatherBy[SortBy[ Range[10^4], f], f]; Table[Table[T[[n - k + 1, k]], {k, n, 1, -1}], {n, 1, Length[T]}] // Flatten (* Amiram Eldar, Feb 04 2020 *)

Extensions

More terms from Amiram Eldar, Feb 04 2020

A192908 Constant term in the reduction by (x^2 -> x + 1) of the polynomial p(n,x) defined below at Comments.

Original entry on oeis.org

1, 1, 3, 7, 17, 43, 111, 289, 755, 1975, 5169, 13531, 35423, 92737, 242787, 635623, 1664081, 4356619, 11405775, 29860705, 78176339, 204668311, 535828593, 1402817467, 3672623807, 9615053953, 25172538051, 65902560199
Offset: 0

Views

Author

Clark Kimberling, Jul 12 2011

Keywords

Comments

The titular polynomial is defined by p(n,x) = (x^2)*p(n-1,x) + x*p(n-2,x), with p(0,x) = 1, p(1,x) = x + 1.

Crossrefs

Cf. A000045; A052995: 2*Fibonacci(2*n-1) for n>0.

Programs

  • GAP
    Concatenation([1], List([1..30], n -> 1+2*Fibonacci(2*(n-1)))); # G. C. Greubel, Jan 11 2019
  • Magma
    [1] cat [1+2*Fibonacci(2*(n-1)): n in [1..30]]; // G. C. Greubel, Jan 11 2019
    
  • Mathematica
    u = 1; v = 1; a = 1; b = 1; c = 1; d = 1; e = 0; f = 1;
    q = x^2; s = u*x + v; z = 26;
    p[0, x_] := a;  p[1, x_] := b*x + c
    p[n_, x_] := d*(x^2)*p[n - 1, x] + e*x*p[n - 2, x] + f;
    Table[Expand[p[n, x]], {n, 0, 8}]
    reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
    t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
    u0 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}]    (* A192908 *)
    u1 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}]    (* A069403 *)
    Simplify[FindLinearRecurrence[u0]] (* recurrence for 0-sequence *)
    Simplify[FindLinearRecurrence[u1]] (* recurrence for 1-sequence *)
    LinearRecurrence[{4,-4,1}, {1,1,3,7}, 30] (* G. C. Greubel, Jan 11 2019 *)
  • PARI
    vector(30, n, n--; if(n==0,1,1+2*fibonacci(2*n-2))) \\ G. C. Greubel, Jan 11 2019
    
  • Sage
    [1]+[1+2*fibonacci(2*(n-1)) for n in (1..30)] # G. C. Greubel, Jan 11 2019
    

Formula

a(n) = 4*a(n-1) - 4*a(n-2) + a(n-3) for n>3.
G.f.: 1 + x*(1 - x - x^2)/((1 - x)*(1 - 3*x + x^2)). - R. J. Mathar, Jul 13 2011
a(n) = 2*Fibonacci(2*n-2) + 1 for n>0, a(0)=1. - Bruno Berselli, Dec 27 2016
a(n) = -1 + 3*a(n-1) - a(n-2) with a(1) = 1 and a(2) = 3. Cf. A055588 and A097136. - Peter Bala, Nov 12 2017

A084707 a(n) = 3*a(n-1) - 3*a(n-3) + a(n-4) for n > 3, with a(0) = 1, a(1) = 3, a(2) = 9, a(3) = 27.

Original entry on oeis.org

1, 3, 9, 27, 73, 195, 513, 1347, 3529, 9243, 24201, 63363, 165889, 434307, 1137033, 2976795, 7793353, 20403267, 53416449, 139846083, 366121801, 958519323, 2509436169, 6569789187, 17199931393, 45030004995, 117890083593, 308640245787, 808030653769
Offset: 0

Views

Author

N. J. A. Sloane, Jul 06 2003

Keywords

Comments

Define f(x, y) := 9 - x - 3*y + x^2 - 3*x*y + y^2. Then f(x, y) = f(-4-y, -4-x). All of the integer solutions of 0 = f(x, y) with x>=0 are given by x = a(2*n) and y = a(2*n+1) for all n in Z. - Michael Somos, Aug 19 2023

Examples

			G.f. = 1 + 3*x + 9*x^2 + 27*x^3 + 73*x^4 + 195*x^5 + 513*x^6 + ... - _Michael Somos_, Aug 19 2023
		

Crossrefs

Programs

  • Magma
    A084707:=[1,3,9,27]; [n le 4 select A084707[n] else 3*Self(n-1)-3*Self(n-3)+Self(n-4): n in [1..30]]; // Wesley Ivan Hurt, Aug 15 2016
    
  • Magma
    [(8*Lucas(2*n) -(-1)^n)/5 -2: n in [0..40]]; // G. C. Greubel, Apr 15 2023
    
  • Maple
    a:=proc(n) option remember; if n=0 then 1 elif n=1 then 3 elif n=2 then 9 elif n=3 then 27 else 3*a(n-1)-3*a(n-3)+a(n-4); fi; end: seq(a(n), n=0..40); # Wesley Ivan Hurt, Aug 15 2016
  • Mathematica
    a[n_]:=a[n]=3a[n-1] -3a[n-3] +a[n-4]; a[0]=1; a[1]=3; a[2]=9; a[3]=27;
    Table[ a[n], {n, 0, 27}]
    Transpose[NestList[Join[Rest[#],ListCorrelate[{1,-3,0,3},#]]&, {1,3,9,27},30]][[1]]
    CoefficientList[Series[(1+3 x^3)/(1-3 x+3 x^3-x^4),{x,0,30}],x]  (* Harvey P. Dale, Mar 14 2011 *)
    a[ n_] := Floor[(LucasL[2*n] - 1)*8/5]; (* Michael Somos, Aug 19 2023 *)
  • PARI
    {a(n) = my(w=quadgen(5)); (real((1+w)^n*(2+w))-1)*8\5}; /* Michael Somos, Aug 19 2023 */
  • SageMath
    [(8*lucas_number2(2*n,1,-1) -(-1)^n)/5 -2 for n in range(41)] # G. C. Greubel, Apr 15 2023
    

Formula

G.f.: (1+3*x^3)/(1-3*x+3*x^3-x^4). - Harvey P. Dale, Mar 14 2011
a(n) = (8*LucasL(2*n) - (-1)^n - 10)/5. - G. C. Greubel, Apr 15 2023
a(n) = a(-n) = 4 + 2*a(n-1) + 2*a(n-2) - a(n-3) for all n in Z. - Michael Somos, Aug 19 2023

Extensions

More terms from Ray Chandler, Jul 07 2003

A069423 Number of n X 3 binary arrays with a path of adjacent 1's and no path of adjacent 0's from top row to bottom row.

Original entry on oeis.org

1, 19, 147, 907, 5149, 28159, 151331, 806463, 4280141, 22670199, 119955523, 634412111, 3354416225, 17734138519, 93751306327, 495600489243, 2619870168133, 13849199313235, 73209594712831, 386999645945759, 2045750897807901, 10814208630415211, 57165847109895879
Offset: 1

Views

Author

R. H. Hardin, Mar 22 2002

Keywords

Crossrefs

Cf. 2 X n A001047, n X 2 A034182, vertical path of 1 A069361-A069395, vertical paths of 0+1 A069396-A069416, vertical path of 1 not 0 A069417-A069428, no vertical paths A069429-A069447, no horizontal or vertical paths A069448-A069452.

Formula

a(n) = A069378(n) - 2 * A069403(n). - Sean A. Irvine, Aug 23 2024
G.f.: x*(2*x^7-10*x^6+23*x^5-18*x^4-5*x^3+21*x^2-8*x-1) / ((x-1)*(x^2-3*x+1)*(2*x^5-4*x^4+x^3+9*x^2-7*x+1)). - Alois P. Heinz, Aug 23 2024

Extensions

More terms from Sean A. Irvine, Aug 23 2024

A069441 Half the number of n X 3 binary arrays with no path of adjacent 1's or adjacent 0's from top row to bottom row.

Original entry on oeis.org

0, 4, 84, 1074, 11058, 102448, 896026, 7578952, 62820362, 514178822, 4174954460, 33725176208, 271523097884, 2181288088576, 17498432045552, 140241880816930, 1123280018219562, 8993350007112124, 71984384316723134, 576073752326317448, 4609640266662591130
Offset: 1

Views

Author

R. H. Hardin, Mar 22 2002

Keywords

Crossrefs

Cf. 2 X n A000079, n X 1 A000225, vertical path of 1 A069361-A069395, vertical paths of 0+1 A069396-A069416, vertical path of 1 not 0 A069417-A069428, no vertical paths A069429-A069447, no horizontal or vertical paths A069448-A069452.

Formula

a(n) = 2^(3*n-1) - A069378(n) + A069403(n). - Sean A. Irvine, Aug 23 2024

Extensions

More terms from Sean A. Irvine, Aug 23 2024

A128544 A007318 * A128540.

Original entry on oeis.org

1, 2, 1, 3, 4, 2, 4, 9, 9, 3, 5, 16, 24, 17, 5, 6, 25, 50, 55, 33, 8, 7, 36, 90, 135, 123, 61, 13, 8, 49, 147, 280, 343, 259, 112, 21, 9, 64, 224, 518, 798, 812, 532, 202, 34, 10, 81, 324, 882, 1638, 2100, 1848, 1062, 361, 55
Offset: 0

Views

Author

Gary W. Adamson, Mar 10 2007

Keywords

Comments

Row sums = A069403: (1, 3, 9, 25, 67, ...).

Examples

			First few rows of the triangle:
  1;
  2,  1;
  3,  4,  2;
  4,  9,  9,   3;
  5, 16, 24,  17,   5;
  6, 25, 50,  55,  33,  8;
  7, 36, 90, 135, 123, 61, 13;
  ...
		

Crossrefs

Formula

A007318 * A128540 as infinite lower triangular matrices; (binomial transform of A128540).
Showing 1-10 of 11 results. Next