cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A269044 a(n) = 13*n + 7.

Original entry on oeis.org

7, 20, 33, 46, 59, 72, 85, 98, 111, 124, 137, 150, 163, 176, 189, 202, 215, 228, 241, 254, 267, 280, 293, 306, 319, 332, 345, 358, 371, 384, 397, 410, 423, 436, 449, 462, 475, 488, 501, 514, 527, 540, 553, 566, 579, 592, 605, 618, 631, 644, 657, 670, 683, 696, 709, 722, 735
Offset: 0

Views

Author

Bruno Berselli, Feb 18 2016

Keywords

Comments

After 7 (which corresponds to n=0), all terms belong to A090767 because a(n) = 3*n*2*1 + 2*(n*2+2*1+n*1) + (n+2+1).
This sequence is related to A152741 by the recurrence A152741(n+1) = (n+1)*a(n+1) - Sum_{k = 0..n} a(k).
Any square mod 13 is one of 0, 1, 3, 4, 9, 10 or 12 (A010376) but not 7, and for this reason there are no squares in the sequence. Likewise, any cube mod 13 is one of 0, 1, 5, 8 or 12, therefore no a(k) is a cube.
The sum of the squares of any two terms of the sequence is also a term of the sequence, that is: a(h)^2 + a(k)^2 = a(h*(13*h+14) + k*(13*k+14) + 7). Therefore: a(h)^2 + a(k)^2 > a(a( h*(h+1) + k*(k+1) )) for h+k > 0.
The primes of the sequence are listed in A140371.

Crossrefs

Cf. A010376, A022271 (partial sums), A088227, A090767, A140371, A152741.
Similar sequences with closed form (2*k-1)*n+k: A001489 (k=0), A000027 (k=1), A016789 (k=2), A016885 (k=3), A017029 (k=4), A017221 (k=5), A017461 (k=6), this sequence (k=7), A164284 (k=8).
Sequences of the form 13*n+q: A008595 (q=0), A190991 (q=1), A153080 (q=2), A127547 (q=4), A154609 (q=5), A186113 (q=6), this sequence (q=7), A269100 (q=11).

Programs

  • Magma
    [13*n+7: n in [0..60]];
    
  • Mathematica
    13 Range[0, 60] + 7 (* or *) Range[7, 800, 13] (* or *) Table[13 n + 7, {n, 0, 60}]
    LinearRecurrence[{2, -1}, {7, 20}, 60] (* Vincenzo Librandi, Feb 19 2016 *)
  • Maxima
    makelist(13*n+7, n, 0, 60);
    
  • PARI
    vector(60, n, n--; 13*n+7)
    
  • Sage
    [13*n+7 for n in (0..60)]

Formula

G.f.: (7 + 6*x)/(1 - x)^2.
a(n) = A088227(4*n+3).
a(n) = -A186113(-n-1).
Sum_{i=h..h+13*k} a(i) = a(h*(13*k + 1) + k*(169*k + 27)/2).
Sum_{i>=0} 1/a(i)^2 = 0.0257568950542502716970... = polygamma(1, 7/13)/13^2.
E.g.f.: exp(x)*(7 + 13*x). - Stefano Spezia, Aug 02 2021

A153080 a(n) = 13*n + 2.

Original entry on oeis.org

2, 15, 28, 41, 54, 67, 80, 93, 106, 119, 132, 145, 158, 171, 184, 197, 210, 223, 236, 249, 262, 275, 288, 301, 314, 327, 340, 353, 366, 379, 392, 405, 418, 431, 444, 457, 470, 483, 496, 509, 522, 535, 548, 561, 574, 587, 600, 613, 626, 639, 652, 665, 678, 691
Offset: 0

Views

Author

Vincenzo Librandi, Feb 10 2009

Keywords

Comments

Any square mod 13 is one of 0, 1, 3, 4, 9, 10 or 12 (A010376) but not 2, and for this reason there are no squares in the sequence. Likewise, any cube mod 13 is one of 0, 1, 5, 8 or 12, therefore no term is a cube. - Bruno Berselli, Feb 19 2016
Numbers k such that GCD(2*k^5+1, 3*k^3+2) > 1. This GCD is 13 if k == 2 (mod 13), or 1 otherwise. - Philippe Deléham, Jan 16 2024

Crossrefs

Cf. A269100. - Bruno Berselli, Feb 22 2016

Programs

Formula

G.f.: (2+11*x)/(1-x)^2. - R. J. Mathar, Jan 05 2011
a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Feb 25 2012
E.g.f.: exp(x)*(2 + 13*x). - Elmo R. Oliveira, Apr 04 2025

A154609 a(n) = 13*n + 5.

Original entry on oeis.org

5, 18, 31, 44, 57, 70, 83, 96, 109, 122, 135, 148, 161, 174, 187, 200, 213, 226, 239, 252, 265, 278, 291, 304, 317, 330, 343, 356, 369, 382, 395, 408, 421, 434, 447, 460, 473, 486, 499, 512, 525, 538, 551, 564, 577, 590, 603, 616, 629, 642, 655, 668, 681, 694
Offset: 0

Views

Author

Vincenzo Librandi, Jan 15 2009

Keywords

Comments

Any square mod 13 is one of 0, 1, 3, 4, 9, 10 or 12 (A010376) but not 5, for this reason there are no squares in sequence. - Bruno Berselli, Feb 19 2016

Crossrefs

Cf. A010376,
Sequences of the form 13*n+q: A008595 (q=0), A190991 (q=1), A153080 (q=2), A127547 (q=4), this sequence (q=5), A186113 (q=6), A269044 (q=7), A269100 (q=11).

Programs

Formula

From Vincenzo Librandi, Feb 26 2012: (Start)
G.f.: (5+8*x)/(1-x)^2.
a(n) = 2*a(n-1) - a(n-2). (End)
E.g.f.: (5 + 13*x)*exp(x). - G. C. Greubel, May 31 2024

A186113 a(n) = 13*n + 6.

Original entry on oeis.org

6, 19, 32, 45, 58, 71, 84, 97, 110, 123, 136, 149, 162, 175, 188, 201, 214, 227, 240, 253, 266, 279, 292, 305, 318, 331, 344, 357, 370, 383, 396, 409, 422, 435, 448, 461, 474, 487, 500, 513, 526, 539, 552, 565, 578, 591, 604, 617, 630, 643, 656, 669, 682
Offset: 0

Views

Author

Omar E. Pol, Feb 12 2011

Keywords

Comments

These numbers appear in the G. E. Andrews paper, for example: see the abstract, formula (1.7), etc. Also "13n + 6" appears in the Folsom-Ono paper (see links).
Row 6 of triangle A151890 lists the first seven terms of this sequence.
Any square mod 13 is one of 0, 1, 3, 4, 9, 10 or 12 (A010376) but not 6, and for this reason there are no squares in the sequence. Likewise, any cube mod 13 is one of 0, 1, 5, 8 or 12, therefore no a(k) is a cube. - Bruno Berselli, Feb 19 2016

Crossrefs

Sequences of the form 13*n+q: A008595 (q=0), A190991 (q=1), A153080 (q=2),
A127547 (q=4), A154609 (q=5), this sequence (q=6), A269044 (q=7), A269100 (q=11).

Programs

Formula

G.f.: (6+7*x)/(1-x)^2.
E.g.f.: (6 + 13*x)*exp(x). - G. C. Greubel, May 31 2024

A127547 a(n) = 13*n + 4.

Original entry on oeis.org

4, 17, 30, 43, 56, 69, 82, 95, 108, 121, 134, 147, 160, 173, 186, 199, 212, 225, 238, 251, 264, 277, 290, 303, 316, 329, 342, 355, 368, 381, 394, 407, 420, 433, 446, 459, 472, 485, 498, 511, 524, 537, 550, 563, 576, 589, 602, 615, 628, 641, 654, 667, 680, 693, 706, 719
Offset: 0

Views

Author

Robert H Barbour, Apr 01 2007

Keywords

Comments

Superhighway created by 'LQTL Ant' L90R90L45R45 from iteration 4 where the Ant moves in a 'Moore neighborhood' (nine cells), the L indicates a left turn, the R a right turn, and the numerical value is the size of the turn (in degrees) at each iteration.
Ant Farm algorithm available from Robert H Barbour.

References

  • P. Sakar, "A Brief History of Cellular Automata," ACM Computing Surveys, vol. 32, pp. 80-107, 2000.

Crossrefs

A subsequence of A092464.
Sequences of the form 13*n+q: A008595 (q=0), A190991 (q=1), A153080 (q=2), this sequence (q=4), A154609 (q=5), A186113 (q=6), A269044 (q=7), A269100 (q=11).

Programs

Formula

From Elmo R. Oliveira, Mar 21 2024: (Start)
G.f.: (4+9*x)/(1-x)^2.
E.g.f.: (4 + 13*x)*exp(x).
a(n) = 2*a(n-1) - a(n-2) for n >= 2. (End)

Extensions

Edited by N. J. A. Sloane, May 10 2007

A111369 Numbers k such that 13*k + 11 is prime.

Original entry on oeis.org

0, 2, 6, 12, 14, 20, 26, 30, 36, 42, 50, 56, 72, 80, 84, 86, 90, 96, 114, 120, 122, 134, 140, 152, 156, 164, 170, 174, 180, 182, 204, 206, 210, 212, 216, 222, 230, 236, 246, 254, 260, 266, 272, 282, 294, 300, 306, 314, 332, 342, 344, 350, 356, 360, 380, 384, 390
Offset: 1

Views

Author

Parthasarathy Nambi, Nov 08 2005

Keywords

Examples

			k=156 is a term because 13*k + 11 = 2039 is prime.
		

Crossrefs

Programs

A319524 a(n) is the smallest number that belongs simultaneously to the two arithmetic progressions prime(n) + m*prime(n+1) and prime(n+1) + m*prime(n+2), m >= 1, n >= 1.

Original entry on oeis.org

8, 33, 40, 128, 115, 302, 226, 226, 835, 401, 734, 1718, 1030, 842, 3121, 3475, 1401, 2339, 5108, 1969, 3233, 2486, 6491, 9692, 10298, 5560, 11552, 6211, 4177, 7987, 6022, 18763, 16678, 21893, 8001, 25585, 13523, 9682, 30961, 32035, 7057, 36089, 19105, 39002, 7162, 47041, 50163, 51752
Offset: 1

Views

Author

Keywords

Comments

Construct a table T in which T(m,n) = prime(n) + m*prime(n+1) as shown below. Then a(n) is defined as the smallest number appearing both in column n and column n+1, so a(1)=8, a(2)=33, a(3)=40, etc.
.
m\n| 1 2 3 4 5 6 7 8 ...
----+--------------------------------------------------
1 | 5 --8 12 18 24 30 36 42 ...
|
2 | 8-- 13 19 29 37 47 55 65 ...
|
3 | 11 18 26 40 50 64 74 88 ...
| /
4 | 14 23 33 / 51 63 81 93 111 ...
| / /
5 | 17 28 / 40- 62 76 98 112 134 ...
| /
6 | 20 33- 47 73 89 115 131 157 ...
| /
7 | 23 38 54 84 102 / 132 150 180 ...
| /
8 | 26 43 61 95 115 149 169 203 ...
|
9 | 29 48 68 106 128 166 188 226 ...
| / /
10 | 32 53 75 117 / 141 183 207 / 249 ...
| / /
11 | 35 58 82 128 154 200 226 272 ...
|
12 | 38 63 89 139 167 217 245 295 ...
|
13 | 41 68 96 150 180 234 264 318 ...
|
14 | 44 73 103 161 193 251 283 341 ...
|
15 | 47 78 110 172 206 268 302 364 ...
| /
16 | 50 83 117 183 219 285 / 321 387 ...
| /
17 | 53 88 124 194 232 302 340 410 ...
|
... |... ... ... ... ... ... ... ... ...
Conjectures:
1. There are infinitely many pairs of consecutive equal terms. (Note that the first pair is (a(7), a(8)).)
2. There exists no N such that the sequence is monotonic for n > N.
From Amiram Eldar, Sep 22 2018: (Start)
Theorem 1: The intersection of the two mentioned arithmetic progressions is always nonempty.
Corollary: The sequence is infinite. (End)
Sequences that derive from this:
1. Positions in {s(n)} at which a(n) occurs: (2,6,5,11,8,17,19,...).
2. Positions in {s(n+1)} at which a(n) occurs: (1,4,3,9,6,15,15,...).
3. Differences between these two sequences: (1,2,2,2,2,4,...).

Crossrefs

Programs

  • GAP
    P:=Filtered([1..10000],IsPrime);;
    T:=List([1..Length(P)-1],n->List([1..Length(P)-1],m->P[n]+m*P[n+1]));;
    a:=List([1..50],k->Minimum(List([1..Length(T)-1],i->Intersection(T[i],T[i+1]))[k])); # Muniru A Asiru, Sep 26 2018
  • Mathematica
    a[n_]:=ChineseRemainder[{Prime[n],Prime[n+1]},{Prime[n+1],Prime[n+2]} ];Array[a,44] (* Amiram Eldar, Sep 22 2018 *)

Extensions

Table from Jon E. Schoenfield, Sep 23 2018
More terms from Amiram Eldar, Sep 22 2018

A278126 a(n) = 78*n + 66.

Original entry on oeis.org

66, 144, 222, 300, 378, 456, 534, 612, 690, 768, 846, 924, 1002, 1080, 1158, 1236, 1314, 1392, 1470, 1548, 1626, 1704, 1782, 1860, 1938, 2016, 2094, 2172, 2250, 2328, 2406, 2484, 2562, 2640, 2718, 2796, 2874, 2952, 3030, 3108, 3186, 3264, 3342, 3420, 3498, 3576
Offset: 0

Views

Author

Emeric Deutsch, Nov 13 2016

Keywords

Comments

a(n) (n>=1) is the first Zagreb index of the triple-layered naphthalenophane G(n,n,n) having n hexagons in each layer. The first Zagreb index of a simple connected graph is the sum of the squared degrees of its vertices. Alternately, it is the sum of the degree sums d(i)+d(j) over all edges ij of the graph. The pictorial definition of G(p,q,r) can be viewed in the E. Flapan references.
The M-polynomial of the triple layered naphthalenophane G(p,q,r) is M(G(p,q,r),x,y) = 8*x^2*y^2 + 4*(p + q + r + 2)*x^2*y^3 + (p + q + r - 1)*x^3*y^3 (p, q, r>=1).

References

  • Erica Flapan, When Topology Meets Chemistry, Cambridge Univ. Press, Cambridge, 2000.

Crossrefs

Programs

  • Maple
    seq(78*n+66, n = 0..45);
  • Mathematica
    78*Range[0,50]+66 (* or *) LinearRecurrence[{2,-1},{66,144},50] (* Harvey P. Dale, Jul 27 2025 *)

Formula

G.f.: 6*(11 + 2*x)/(1 - x)^2.
a(n) = 6*A269100(n).
Showing 1-8 of 8 results.