cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A269044 a(n) = 13*n + 7.

Original entry on oeis.org

7, 20, 33, 46, 59, 72, 85, 98, 111, 124, 137, 150, 163, 176, 189, 202, 215, 228, 241, 254, 267, 280, 293, 306, 319, 332, 345, 358, 371, 384, 397, 410, 423, 436, 449, 462, 475, 488, 501, 514, 527, 540, 553, 566, 579, 592, 605, 618, 631, 644, 657, 670, 683, 696, 709, 722, 735
Offset: 0

Views

Author

Bruno Berselli, Feb 18 2016

Keywords

Comments

After 7 (which corresponds to n=0), all terms belong to A090767 because a(n) = 3*n*2*1 + 2*(n*2+2*1+n*1) + (n+2+1).
This sequence is related to A152741 by the recurrence A152741(n+1) = (n+1)*a(n+1) - Sum_{k = 0..n} a(k).
Any square mod 13 is one of 0, 1, 3, 4, 9, 10 or 12 (A010376) but not 7, and for this reason there are no squares in the sequence. Likewise, any cube mod 13 is one of 0, 1, 5, 8 or 12, therefore no a(k) is a cube.
The sum of the squares of any two terms of the sequence is also a term of the sequence, that is: a(h)^2 + a(k)^2 = a(h*(13*h+14) + k*(13*k+14) + 7). Therefore: a(h)^2 + a(k)^2 > a(a( h*(h+1) + k*(k+1) )) for h+k > 0.
The primes of the sequence are listed in A140371.

Crossrefs

Cf. A010376, A022271 (partial sums), A088227, A090767, A140371, A152741.
Similar sequences with closed form (2*k-1)*n+k: A001489 (k=0), A000027 (k=1), A016789 (k=2), A016885 (k=3), A017029 (k=4), A017221 (k=5), A017461 (k=6), this sequence (k=7), A164284 (k=8).
Sequences of the form 13*n+q: A008595 (q=0), A190991 (q=1), A153080 (q=2), A127547 (q=4), A154609 (q=5), A186113 (q=6), this sequence (q=7), A269100 (q=11).

Programs

  • Magma
    [13*n+7: n in [0..60]];
    
  • Mathematica
    13 Range[0, 60] + 7 (* or *) Range[7, 800, 13] (* or *) Table[13 n + 7, {n, 0, 60}]
    LinearRecurrence[{2, -1}, {7, 20}, 60] (* Vincenzo Librandi, Feb 19 2016 *)
  • Maxima
    makelist(13*n+7, n, 0, 60);
    
  • PARI
    vector(60, n, n--; 13*n+7)
    
  • Sage
    [13*n+7 for n in (0..60)]

Formula

G.f.: (7 + 6*x)/(1 - x)^2.
a(n) = A088227(4*n+3).
a(n) = -A186113(-n-1).
Sum_{i=h..h+13*k} a(i) = a(h*(13*k + 1) + k*(169*k + 27)/2).
Sum_{i>=0} 1/a(i)^2 = 0.0257568950542502716970... = polygamma(1, 7/13)/13^2.
E.g.f.: exp(x)*(7 + 13*x). - Stefano Spezia, Aug 02 2021

A269100 a(n) = 13*n + 11.

Original entry on oeis.org

11, 24, 37, 50, 63, 76, 89, 102, 115, 128, 141, 154, 167, 180, 193, 206, 219, 232, 245, 258, 271, 284, 297, 310, 323, 336, 349, 362, 375, 388, 401, 414, 427, 440, 453, 466, 479, 492, 505, 518, 531, 544, 557, 570, 583, 596, 609, 622, 635, 648, 661, 674, 687, 700, 713, 726, 739
Offset: 0

Views

Author

Bruno Berselli, Feb 19 2016

Keywords

Comments

Any square mod 13 is one of 0, 1, 3, 4, 9, 10 or 12 (A010376) but not 11, and for this reason there are no squares in the sequence. Likewise, any cube mod 13 is one of 0, 1, 5, 8 or 12, therefore no a(k) is a cube.
Sequences of the type 13*n + k, for k = 0..12, without squares and cubes:
k = 2: A153080,
k = 6: A186113,
k = 7: A269044,
k = 11: this case.
The sum of the sixth powers of any two terms of the sequence is also a term of the sequence. Example: a(3)^6 + a(8)^6 = a(179129674278) = 2328685765625.
The primes of the sequence are listed in A140373.

Crossrefs

Subsequence of A094784, A106389.
Cf. A140373.
Similar sequences of the type k*n+k-2: A023443 (k=1), A005843 (k=2), A016777 (k=3), A016825 (k=4), A016885 (k=5), A016957 (k=6), A017041 (k=7), A017137 (k=8), A017245 (k=9), A017365 (k=10), A017497 (k=11), A017641 (k=12).
Sequences of the form 13*n+q: A008595 (q=0), A190991 (q=1), A153080 (q=2), A127547 (q=4), A154609 (q=5), A186113 (q=6), A269044 (q=7), this sequence (q=11).

Programs

  • Magma
    [13*n+11: n in [0..60]];
  • Mathematica
    13 Range[0,60] + 11
    Range[11, 800, 13]
    Table[13 n + 11, {n, 0, 60}] (* Bruno Berselli, Feb 22 2016 *)
    LinearRecurrence[{2,-1},{11,24},60] (* Harvey P. Dale, Jun 14 2023 *)
  • Maxima
    makelist(13*n+11, n, 0, 60);
    
  • PARI
    vector(60, n, n--; 13*n+11)
    
  • Python
    [13*n+11 for n in range(61)]
    
  • Sage
    [13*n+11 for n in range(61)]
    

Formula

G.f.: (11 + 2*x)/(1 - x)^2.
a(n) = -A153080(-n-1).
Sum_{i = h..h+13*k} a(i) = a(h*(13*k + 1) + k*(169*k + 35)/2).
Sum_{i >= 0} 1/a(i)^2 = .012486605016510955990... = polygamma(1, 11/13)/13^2.
E.g.f.: (11 + 13*x)*exp(x). - G. C. Greubel, May 31 2024

A186030 a(n) = n*(13*n-3)/2.

Original entry on oeis.org

0, 5, 23, 54, 98, 155, 225, 308, 404, 513, 635, 770, 918, 1079, 1253, 1440, 1640, 1853, 2079, 2318, 2570, 2835, 3113, 3404, 3708, 4025, 4355, 4698, 5054, 5423, 5805, 6200, 6608, 7029, 7463, 7910, 8370, 8843, 9329, 9828, 10340, 10865, 11403
Offset: 0

Views

Author

Bruno Berselli, Feb 11 2011

Keywords

Crossrefs

Cf. numbers of the form n*(d*n+10-d)/2 indexed in A140090.
Cf. A154609 (first differences).

Programs

Formula

G.f.: x*(5+8*x)/(1-x)^3.
From Bruno Berselli, Sep 05 2011: (Start)
a(n) - a(-n) = -A008585(n).
a(n) + a(-n) = A152742(n). (End)
E.g.f.: (1/2)*(13*x^2 + 10*x)*exp(x). - G. C. Greubel, Jul 17 2017

A186113 a(n) = 13*n + 6.

Original entry on oeis.org

6, 19, 32, 45, 58, 71, 84, 97, 110, 123, 136, 149, 162, 175, 188, 201, 214, 227, 240, 253, 266, 279, 292, 305, 318, 331, 344, 357, 370, 383, 396, 409, 422, 435, 448, 461, 474, 487, 500, 513, 526, 539, 552, 565, 578, 591, 604, 617, 630, 643, 656, 669, 682
Offset: 0

Views

Author

Omar E. Pol, Feb 12 2011

Keywords

Comments

These numbers appear in the G. E. Andrews paper, for example: see the abstract, formula (1.7), etc. Also "13n + 6" appears in the Folsom-Ono paper (see links).
Row 6 of triangle A151890 lists the first seven terms of this sequence.
Any square mod 13 is one of 0, 1, 3, 4, 9, 10 or 12 (A010376) but not 6, and for this reason there are no squares in the sequence. Likewise, any cube mod 13 is one of 0, 1, 5, 8 or 12, therefore no a(k) is a cube. - Bruno Berselli, Feb 19 2016

Crossrefs

Sequences of the form 13*n+q: A008595 (q=0), A190991 (q=1), A153080 (q=2),
A127547 (q=4), A154609 (q=5), this sequence (q=6), A269044 (q=7), A269100 (q=11).

Programs

Formula

G.f.: (6+7*x)/(1-x)^2.
E.g.f.: (6 + 13*x)*exp(x). - G. C. Greubel, May 31 2024

A127547 a(n) = 13*n + 4.

Original entry on oeis.org

4, 17, 30, 43, 56, 69, 82, 95, 108, 121, 134, 147, 160, 173, 186, 199, 212, 225, 238, 251, 264, 277, 290, 303, 316, 329, 342, 355, 368, 381, 394, 407, 420, 433, 446, 459, 472, 485, 498, 511, 524, 537, 550, 563, 576, 589, 602, 615, 628, 641, 654, 667, 680, 693, 706, 719
Offset: 0

Views

Author

Robert H Barbour, Apr 01 2007

Keywords

Comments

Superhighway created by 'LQTL Ant' L90R90L45R45 from iteration 4 where the Ant moves in a 'Moore neighborhood' (nine cells), the L indicates a left turn, the R a right turn, and the numerical value is the size of the turn (in degrees) at each iteration.
Ant Farm algorithm available from Robert H Barbour.

References

  • P. Sakar, "A Brief History of Cellular Automata," ACM Computing Surveys, vol. 32, pp. 80-107, 2000.

Crossrefs

A subsequence of A092464.
Sequences of the form 13*n+q: A008595 (q=0), A190991 (q=1), A153080 (q=2), this sequence (q=4), A154609 (q=5), A186113 (q=6), A269044 (q=7), A269100 (q=11).

Programs

Formula

From Elmo R. Oliveira, Mar 21 2024: (Start)
G.f.: (4+9*x)/(1-x)^2.
E.g.f.: (4 + 13*x)*exp(x).
a(n) = 2*a(n-1) - a(n-2) for n >= 2. (End)

Extensions

Edited by N. J. A. Sloane, May 10 2007

A155086 Numbers k such that k^2 == -1 (mod 13).

Original entry on oeis.org

5, 8, 18, 21, 31, 34, 44, 47, 57, 60, 70, 73, 83, 86, 96, 99, 109, 112, 122, 125, 135, 138, 148, 151, 161, 164, 174, 177, 187, 190, 200, 203, 213, 216, 226, 229, 239, 242, 252, 255, 265, 268, 278, 281, 291, 294, 304, 307, 317, 320, 330, 333, 343, 346, 356, 359
Offset: 1

Views

Author

Vincenzo Librandi, Jan 20 2009

Keywords

Comments

Numbers k such that k == 5 or 8 mod 13. - Charles R Greathouse IV, Dec 28 2011

Crossrefs

Cf. A002144, A047221 (m=5), A155095 (m=17), A156619 (m=25), A155096 (m=29), A155097 (m=37), A155098 (m=41), A154609 (bisection).

Programs

  • Magma
    I:=[5, 8, 18]; [n le 3 select I[n] else Self(n-1)+Self(n-2)-Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 26 2012
  • Mathematica
    LinearRecurrence[{1, 1, -1}, {5, 8, 18}, 50] (* Vincenzo Librandi, Feb 26 2012 *)
    Select[Range[1000], PowerMod[#, 2, 13] == 12 &] (* Vincenzo Librandi, Apr 24 2014 *)

Formula

a(n) = a(n-1)+a(n-2)-a(n-3).
G.f.: x*(5+3*x+5*x^2)/((1+x)*(x-1)^2) .
a(n) = 13*(n-1/2)/2 -7*(-1)^n/4.
a(n) = a(n-2)+13. - M. F. Hasler, Jun 16 2010
Sum_{n>=1} (-1)^(n+1)/a(n) = tan(3*Pi/26)*Pi/13. - Amiram Eldar, Feb 27 2023
From Amiram Eldar, Nov 25 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = cos(Pi/26)*sec(3*Pi/26) = 1/(2*cos(Pi/13)-1).
Product_{n>=1} (1 + (-1)^n/a(n)) = cosec(5*Pi/26)/2. (End)

Extensions

Algebra simplified by R. J. Mathar, Aug 18 2009
Edited by N. J. A. Sloane, Jun 23 2010

A156640 a(n) = 169*n^2 + 140*n + 29.

Original entry on oeis.org

29, 338, 985, 1970, 3293, 4954, 6953, 9290, 11965, 14978, 18329, 22018, 26045, 30410, 35113, 40154, 45533, 51250, 57305, 63698, 70429, 77498, 84905, 92650, 100733, 109154, 117913, 127010, 136445, 146218, 156329, 166778
Offset: 0

Views

Author

Vincenzo Librandi, Feb 15 2009

Keywords

Comments

The identity (57122*n^2 +47320*n +9801)^2 - (169*n^2 +140*n +29)*(4394*n +1820)^2 = 1 can be written as A156735(n)^2 - a(n)*A156636(n)^2 = 1.
The continued fraction expansion of sqrt(a(n)) is [13n+5; {2, 1, 1, 2, 26n+10}]. - Magus K. Chu, Sep 15 2022
From Klaus Purath, Apr 06 2025: (Start)
a(n)*13^2-1 is a square, and a(n) is the sum of two squares (see FORMULA). There are no squares in this sequence. The odd prime factors of these terms are always of the form 4*k + 1.
All a(n) = D satisfy the Pell equation (k*x)^2 - D*(13*y)^2 = -1 for any integer n where a(1-n) = A156639(n). The values for k and the solutions x, y can be calculated using the following algorithm: k = sqrt(D*13^2 - 1), x(0) = 1, x(1) = 4*D*13^2 - 1, y(0) = 1, y(1) = 4*D*13^2 - 3. The two recurrences are of the form (4*D*13^2 - 2, -1).
It follows from the above that this sequence and A156639 belong to A031396. (End)

Crossrefs

Cf. A154609 (13n+5).
Subsequence of A031396.

Programs

  • Magma
    I:=[29, 338, 985]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]];
    
  • Maple
    A156640:= n-> 169*n^2 + 140*n + 29; seq(A156640(n), n=0..50); # G. C. Greubel, Feb 28 2021
  • Mathematica
    LinearRecurrence[{3,-3,1},{29,338,985},50]
    CoefficientList[Series[(29 +251x +58x^2)/(1-x)^3, {x, 0, 60}], x] (* Vincenzo Librandi, May 03 2014 *)
  • PARI
    a(n)=169*n^2+140*n+29 \\ Charles R Greathouse IV, Dec 23 2011
    
  • Sage
    [169*n^2 + 140*n + 29 for n in (0..50)] # G. C. Greubel, Feb 28 2021

Formula

a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) for n>2.
G.f.: (29 + 251*x + 58*x^2)/(1-x)^3. - Vincenzo Librandi, May 03 2014
E.g.f.: (29 +309*x +169*x^2)*exp(x). - G. C. Greubel, Feb 28 2021
From Klaus Purath, Apr 06 2025: (Start)
a(n) = (5*n + 2)^2 + (12*n + 5)^2 for any integer n.
169*a(n) - 1 = (169*n + 70)^2 for any integer n. (End)

Extensions

Edited by Charles R Greathouse IV, Jul 25 2010

A154610 Numbers n such that 13n + 5 is prime.

Original entry on oeis.org

0, 2, 6, 8, 18, 24, 32, 38, 44, 56, 62, 66, 72, 74, 78, 84, 86, 92, 98, 108, 114, 128, 132, 134, 144, 162, 164, 174, 176, 182, 186, 198, 204, 206, 224, 228, 246, 248, 254, 258, 266, 272, 276, 282, 284, 296, 302, 318, 324, 326, 336, 342, 368, 378, 386, 392, 396
Offset: 1

Views

Author

Vincenzo Librandi, Jan 15 2009

Keywords

Crossrefs

Programs

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Jul 01 2009
Showing 1-8 of 8 results.