cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A226488 a(n) = n*(13*n - 9)/2.

Original entry on oeis.org

0, 2, 17, 45, 86, 140, 207, 287, 380, 486, 605, 737, 882, 1040, 1211, 1395, 1592, 1802, 2025, 2261, 2510, 2772, 3047, 3335, 3636, 3950, 4277, 4617, 4970, 5336, 5715, 6107, 6512, 6930, 7361, 7805, 8262, 8732, 9215, 9711, 10220, 10742, 11277, 11825, 12386, 12960
Offset: 0

Views

Author

Bruno Berselli, Jun 09 2013

Keywords

Comments

Sum of n-th octagonal number and n-th 9-gonal (nonagonal) number.
Sum of reciprocals of a(n), for n>0: 0.629618994194109711163742089971688...

Crossrefs

Cf. A000567, A001106, A153080 (first differences).
Cf. numbers of the form n*(n*k-k+4)/2 listed in A005843 (k=0), A000096 (k=1), A002378 (k=2), A005449 (k=3), A001105 (k=4), A005476 (k=5), A049450 (k=6), A218471 (k=7), A002939 (k=8), A062708 (k=9), A135706 (k=10), A180223 (k=11), A139267 (n=12), this sequence (k=13), A139268 (k=14), A226489 (k=15), A139271 (k=16), A180232 (k=17), A152995 (k=18), A226490 (k=19), A152965 (k=20), A226491 (k=21), A152997 (k=22).

Programs

  • GAP
    List([0..50], n-> n*(13*n-9)/2); # G. C. Greubel, Aug 30 2019
  • Magma
    [n*(13*n-9)/2: n in [0..50]];
    
  • Magma
    I:=[0,2,17]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2) +Self(n-3): n in [1..50]]; // Vincenzo Librandi, Aug 18 2013
    
  • Maple
    A226488:=n->n*(13*n - 9)/2; seq(A226488(n), n=0..50); # Wesley Ivan Hurt, Feb 25 2014
  • Mathematica
    Table[n(13n-9)/2, {n, 0, 50}]
    LinearRecurrence[{3, -3, 1}, {0, 2, 17}, 50] (* Harvey P. Dale, Jun 19 2013 *)
    CoefficientList[Series[x(2+11x)/(1-x)^3, {x, 0, 45}], x] (* Vincenzo Librandi, Aug 18 2013 *)
  • PARI
    a(n)=n*(13*n-9)/2 \\ Charles R Greathouse IV, Sep 24 2015
    
  • Sage
    [n*(13*n-9)/2 for n in (0..50)] # G. C. Greubel, Aug 30 2019
    

Formula

G.f.: x*(2+11*x)/(1-x)^3.
a(n) + a(-n) = A152742(n).
a(0)=0, a(1)=2, a(2)=17; for n>2, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Jun 19 2013
E.g.f.: x*(4 + 13*x)*exp(x)/2. - G. C. Greubel, Aug 30 2019
a(n) = A000567(n) + A001106(n). - Michel Marcus, Aug 31 2019

A269044 a(n) = 13*n + 7.

Original entry on oeis.org

7, 20, 33, 46, 59, 72, 85, 98, 111, 124, 137, 150, 163, 176, 189, 202, 215, 228, 241, 254, 267, 280, 293, 306, 319, 332, 345, 358, 371, 384, 397, 410, 423, 436, 449, 462, 475, 488, 501, 514, 527, 540, 553, 566, 579, 592, 605, 618, 631, 644, 657, 670, 683, 696, 709, 722, 735
Offset: 0

Views

Author

Bruno Berselli, Feb 18 2016

Keywords

Comments

After 7 (which corresponds to n=0), all terms belong to A090767 because a(n) = 3*n*2*1 + 2*(n*2+2*1+n*1) + (n+2+1).
This sequence is related to A152741 by the recurrence A152741(n+1) = (n+1)*a(n+1) - Sum_{k = 0..n} a(k).
Any square mod 13 is one of 0, 1, 3, 4, 9, 10 or 12 (A010376) but not 7, and for this reason there are no squares in the sequence. Likewise, any cube mod 13 is one of 0, 1, 5, 8 or 12, therefore no a(k) is a cube.
The sum of the squares of any two terms of the sequence is also a term of the sequence, that is: a(h)^2 + a(k)^2 = a(h*(13*h+14) + k*(13*k+14) + 7). Therefore: a(h)^2 + a(k)^2 > a(a( h*(h+1) + k*(k+1) )) for h+k > 0.
The primes of the sequence are listed in A140371.

Crossrefs

Cf. A010376, A022271 (partial sums), A088227, A090767, A140371, A152741.
Similar sequences with closed form (2*k-1)*n+k: A001489 (k=0), A000027 (k=1), A016789 (k=2), A016885 (k=3), A017029 (k=4), A017221 (k=5), A017461 (k=6), this sequence (k=7), A164284 (k=8).
Sequences of the form 13*n+q: A008595 (q=0), A190991 (q=1), A153080 (q=2), A127547 (q=4), A154609 (q=5), A186113 (q=6), this sequence (q=7), A269100 (q=11).

Programs

  • Magma
    [13*n+7: n in [0..60]];
    
  • Mathematica
    13 Range[0, 60] + 7 (* or *) Range[7, 800, 13] (* or *) Table[13 n + 7, {n, 0, 60}]
    LinearRecurrence[{2, -1}, {7, 20}, 60] (* Vincenzo Librandi, Feb 19 2016 *)
  • Maxima
    makelist(13*n+7, n, 0, 60);
    
  • PARI
    vector(60, n, n--; 13*n+7)
    
  • Sage
    [13*n+7 for n in (0..60)]

Formula

G.f.: (7 + 6*x)/(1 - x)^2.
a(n) = A088227(4*n+3).
a(n) = -A186113(-n-1).
Sum_{i=h..h+13*k} a(i) = a(h*(13*k + 1) + k*(169*k + 27)/2).
Sum_{i>=0} 1/a(i)^2 = 0.0257568950542502716970... = polygamma(1, 7/13)/13^2.
E.g.f.: exp(x)*(7 + 13*x). - Stefano Spezia, Aug 02 2021

A190991 a(n) = 13*n + 1.

Original entry on oeis.org

1, 14, 27, 40, 53, 66, 79, 92, 105, 118, 131, 144, 157, 170, 183, 196, 209, 222, 235, 248, 261, 274, 287, 300, 313, 326, 339, 352, 365, 378, 391, 404, 417, 430, 443, 456, 469, 482, 495, 508, 521, 534, 547, 560, 573, 586, 599, 612, 625, 638, 651, 664, 677
Offset: 0

Views

Author

Keywords

Comments

Partial sums give A051867. - Leo Tavares, Mar 19 2023

Crossrefs

Programs

Formula

a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Jun 11 2011
From Alejandro J. Becerra Jr., Jun 04 2020: (Start)
a(n) = 13*A001477(n) + A000012(n).
G.f.: (1 + 12*x)/(1 - x)^2. (End)
E.g.f.: (1+13*x)*exp(x). - G. C. Greubel, Sep 16 2022

A154609 a(n) = 13*n + 5.

Original entry on oeis.org

5, 18, 31, 44, 57, 70, 83, 96, 109, 122, 135, 148, 161, 174, 187, 200, 213, 226, 239, 252, 265, 278, 291, 304, 317, 330, 343, 356, 369, 382, 395, 408, 421, 434, 447, 460, 473, 486, 499, 512, 525, 538, 551, 564, 577, 590, 603, 616, 629, 642, 655, 668, 681, 694
Offset: 0

Views

Author

Vincenzo Librandi, Jan 15 2009

Keywords

Comments

Any square mod 13 is one of 0, 1, 3, 4, 9, 10 or 12 (A010376) but not 5, for this reason there are no squares in sequence. - Bruno Berselli, Feb 19 2016

Crossrefs

Cf. A010376,
Sequences of the form 13*n+q: A008595 (q=0), A190991 (q=1), A153080 (q=2), A127547 (q=4), this sequence (q=5), A186113 (q=6), A269044 (q=7), A269100 (q=11).

Programs

Formula

From Vincenzo Librandi, Feb 26 2012: (Start)
G.f.: (5+8*x)/(1-x)^2.
a(n) = 2*a(n-1) - a(n-2). (End)
E.g.f.: (5 + 13*x)*exp(x). - G. C. Greubel, May 31 2024

A269100 a(n) = 13*n + 11.

Original entry on oeis.org

11, 24, 37, 50, 63, 76, 89, 102, 115, 128, 141, 154, 167, 180, 193, 206, 219, 232, 245, 258, 271, 284, 297, 310, 323, 336, 349, 362, 375, 388, 401, 414, 427, 440, 453, 466, 479, 492, 505, 518, 531, 544, 557, 570, 583, 596, 609, 622, 635, 648, 661, 674, 687, 700, 713, 726, 739
Offset: 0

Views

Author

Bruno Berselli, Feb 19 2016

Keywords

Comments

Any square mod 13 is one of 0, 1, 3, 4, 9, 10 or 12 (A010376) but not 11, and for this reason there are no squares in the sequence. Likewise, any cube mod 13 is one of 0, 1, 5, 8 or 12, therefore no a(k) is a cube.
Sequences of the type 13*n + k, for k = 0..12, without squares and cubes:
k = 2: A153080,
k = 6: A186113,
k = 7: A269044,
k = 11: this case.
The sum of the sixth powers of any two terms of the sequence is also a term of the sequence. Example: a(3)^6 + a(8)^6 = a(179129674278) = 2328685765625.
The primes of the sequence are listed in A140373.

Crossrefs

Subsequence of A094784, A106389.
Cf. A140373.
Similar sequences of the type k*n+k-2: A023443 (k=1), A005843 (k=2), A016777 (k=3), A016825 (k=4), A016885 (k=5), A016957 (k=6), A017041 (k=7), A017137 (k=8), A017245 (k=9), A017365 (k=10), A017497 (k=11), A017641 (k=12).
Sequences of the form 13*n+q: A008595 (q=0), A190991 (q=1), A153080 (q=2), A127547 (q=4), A154609 (q=5), A186113 (q=6), A269044 (q=7), this sequence (q=11).

Programs

  • Magma
    [13*n+11: n in [0..60]];
  • Mathematica
    13 Range[0,60] + 11
    Range[11, 800, 13]
    Table[13 n + 11, {n, 0, 60}] (* Bruno Berselli, Feb 22 2016 *)
    LinearRecurrence[{2,-1},{11,24},60] (* Harvey P. Dale, Jun 14 2023 *)
  • Maxima
    makelist(13*n+11, n, 0, 60);
    
  • PARI
    vector(60, n, n--; 13*n+11)
    
  • Python
    [13*n+11 for n in range(61)]
    
  • Sage
    [13*n+11 for n in range(61)]
    

Formula

G.f.: (11 + 2*x)/(1 - x)^2.
a(n) = -A153080(-n-1).
Sum_{i = h..h+13*k} a(i) = a(h*(13*k + 1) + k*(169*k + 35)/2).
Sum_{i >= 0} 1/a(i)^2 = .012486605016510955990... = polygamma(1, 11/13)/13^2.
E.g.f.: (11 + 13*x)*exp(x). - G. C. Greubel, May 31 2024

A186113 a(n) = 13*n + 6.

Original entry on oeis.org

6, 19, 32, 45, 58, 71, 84, 97, 110, 123, 136, 149, 162, 175, 188, 201, 214, 227, 240, 253, 266, 279, 292, 305, 318, 331, 344, 357, 370, 383, 396, 409, 422, 435, 448, 461, 474, 487, 500, 513, 526, 539, 552, 565, 578, 591, 604, 617, 630, 643, 656, 669, 682
Offset: 0

Views

Author

Omar E. Pol, Feb 12 2011

Keywords

Comments

These numbers appear in the G. E. Andrews paper, for example: see the abstract, formula (1.7), etc. Also "13n + 6" appears in the Folsom-Ono paper (see links).
Row 6 of triangle A151890 lists the first seven terms of this sequence.
Any square mod 13 is one of 0, 1, 3, 4, 9, 10 or 12 (A010376) but not 6, and for this reason there are no squares in the sequence. Likewise, any cube mod 13 is one of 0, 1, 5, 8 or 12, therefore no a(k) is a cube. - Bruno Berselli, Feb 19 2016

Crossrefs

Sequences of the form 13*n+q: A008595 (q=0), A190991 (q=1), A153080 (q=2),
A127547 (q=4), A154609 (q=5), this sequence (q=6), A269044 (q=7), A269100 (q=11).

Programs

Formula

G.f.: (6+7*x)/(1-x)^2.
E.g.f.: (6 + 13*x)*exp(x). - G. C. Greubel, May 31 2024

A127547 a(n) = 13*n + 4.

Original entry on oeis.org

4, 17, 30, 43, 56, 69, 82, 95, 108, 121, 134, 147, 160, 173, 186, 199, 212, 225, 238, 251, 264, 277, 290, 303, 316, 329, 342, 355, 368, 381, 394, 407, 420, 433, 446, 459, 472, 485, 498, 511, 524, 537, 550, 563, 576, 589, 602, 615, 628, 641, 654, 667, 680, 693, 706, 719
Offset: 0

Views

Author

Robert H Barbour, Apr 01 2007

Keywords

Comments

Superhighway created by 'LQTL Ant' L90R90L45R45 from iteration 4 where the Ant moves in a 'Moore neighborhood' (nine cells), the L indicates a left turn, the R a right turn, and the numerical value is the size of the turn (in degrees) at each iteration.
Ant Farm algorithm available from Robert H Barbour.

References

  • P. Sakar, "A Brief History of Cellular Automata," ACM Computing Surveys, vol. 32, pp. 80-107, 2000.

Crossrefs

A subsequence of A092464.
Sequences of the form 13*n+q: A008595 (q=0), A190991 (q=1), A153080 (q=2), this sequence (q=4), A154609 (q=5), A186113 (q=6), A269044 (q=7), A269100 (q=11).

Programs

Formula

From Elmo R. Oliveira, Mar 21 2024: (Start)
G.f.: (4+9*x)/(1-x)^2.
E.g.f.: (4 + 13*x)*exp(x).
a(n) = 2*a(n-1) - a(n-2) for n >= 2. (End)

Extensions

Edited by N. J. A. Sloane, May 10 2007

A139614 a(n) = 91*n + 14.

Original entry on oeis.org

14, 105, 196, 287, 378, 469, 560, 651, 742, 833, 924, 1015, 1106, 1197, 1288, 1379, 1470, 1561, 1652, 1743, 1834, 1925, 2016, 2107, 2198, 2289, 2380, 2471, 2562, 2653, 2744, 2835, 2926, 3017, 3108, 3199, 3290, 3381, 3472, 3563, 3654
Offset: 0

Views

Author

Omar E. Pol, Apr 27 2008

Keywords

Comments

Numbers of the 14th column of positive numbers in the square array of nonnegative and polygonal numbers A139600. Also, numbers of the 14th column in the square array A057145.

Crossrefs

Programs

Formula

a(n) = 2*a(n-1) - a(n-2); a(0)=14, a(1)=105. - Harvey P. Dale, Feb 25 2015
From Elmo R. Oliveira, Apr 04 2024: (Start)
G.f.: 7*(2+11*x)/(x-1)^2.
E.g.f.: 7*exp(x)*(2 + 13*x).
a(n) = 7*A153080(n). (End)
Showing 1-8 of 8 results.