Original entry on oeis.org
0, 1, 7, 11, 23, 30, 48, 58, 82, 95, 125, 141, 177, 196, 238, 260, 308, 333, 387, 415, 475, 506, 572, 606, 678, 715, 793, 833, 917, 960, 1050, 1096, 1192, 1241, 1343, 1395, 1503, 1558, 1672, 1730, 1850, 1911, 2037, 2101, 2233, 2300, 2438, 2508, 2652, 2725, 2875, 2951, 3107, 3186, 3348
Offset: 0
-
LinearRecurrence[{1,2,-2,-1,1},{0,1,7,11,23},70] (* Harvey P. Dale, Jun 29 2023 *)
A081266
Staggered diagonal of triangular spiral in A051682.
Original entry on oeis.org
0, 6, 21, 45, 78, 120, 171, 231, 300, 378, 465, 561, 666, 780, 903, 1035, 1176, 1326, 1485, 1653, 1830, 2016, 2211, 2415, 2628, 2850, 3081, 3321, 3570, 3828, 4095, 4371, 4656, 4950, 5253, 5565, 5886, 6216, 6555, 6903, 7260, 7626, 8001, 8385, 8778, 9180
Offset: 0
a(1)=9*1+0-3=6, a(2)=9*2+6-3=21, a(3)=9*3+21-3=45.
For n=3, a(3) = -0^2+1^2-2^2+3^2-4^2+5^2-6^2+7^2-8^2+9^2 = 45.
- Muniru A Asiru, Table of n, a(n) for n = 0..10000
- Tomislav Došlić and Luka Podrug, Sweet division problems: from chocolate bars to honeycomb strips and back, arXiv:2304.12121 [math.CO], 2023.
- Milan Janjic, Two Enumerative Functions
- Milan Janjic and B. Petkovic, A Counting Function, arXiv:1301.4550 [math.CO], 2013.
- Amelia Carolina Sparavigna, The groupoid of the Triangular Numbers and the generation of related integer sequences, Politecnico di Torino, Italy (2019).
- Leo Tavares, Star illustration
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
-
List([0..50],n->Binomial(3*n+1,2)); # Muniru A Asiru, Feb 28 2019
-
seq(binomial(3*n+1,2), n=0..45); # Zerinvary Lajos, Jan 21 2007
-
LinearRecurrence[{3,-3,1},{0,6,21},50] (* Harvey P. Dale, Aug 29 2015 *)
-
a(n)=3*n*(3*n+1)/2 \\ Charles R Greathouse IV, Jun 17 2017
A218470
Partial sums of floor(n/9).
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 141, 147, 153, 159, 165, 171, 177, 183, 189, 196, 203, 210, 217, 224
Offset: 0
As square array:
..0....0....0....0....0....0....0....0....0....
..1....2....3....4....5....6....7....8....9....
.11...13...15...17...19...21...23...25...27....
.30...33...36...39...42...45...48...51...54....
.58...62...66...70...74...78...82...86...90....
.95..100..105..110..115..120..125..130..135....
141..147..153..159..165..171..177..183..189....
196..203..210..217..224..231..238..245..252....
...
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,0,0,0,1,-2,1).
-
[&+[Floor(k/9): k in [0..n]]: n in [0..70]]; // Bruno Berselli, Mar 27 2013
-
Accumulate[Floor[Range[0, 100]/9]] (* Jean-François Alcover, Mar 27 2013 *)
-
for(n=0,50, print1(sum(k=0,n, floor(k/9)), ", ")) \\ G. C. Greubel, Dec 13 2016
-
a(n)=my(k=n\9); k*(9*k-7)/2 + k*(n-9*k) \\ Charles R Greathouse IV, Dec 13 2016
A245300
Triangle T(n,k) = (n+k)*(n+k+1)/2 + k, 0 <= k <= n, read by rows.
Original entry on oeis.org
0, 1, 4, 3, 7, 12, 6, 11, 17, 24, 10, 16, 23, 31, 40, 15, 22, 30, 39, 49, 60, 21, 29, 38, 48, 59, 71, 84, 28, 37, 47, 58, 70, 83, 97, 112, 36, 46, 57, 69, 82, 96, 111, 127, 144, 45, 56, 68, 81, 95, 110, 126, 143, 161, 180, 55, 67, 80, 94, 109, 125, 142, 160, 179, 199, 220
Offset: 0
First rows and their row sums (A245301):
0 0;
1, 4 5;
3, 7, 12 22;
6, 11, 17, 24 58;
10, 16, 23, 31, 40 120;
15, 22, 30, 39, 49, 60 215;
21, 29, 38, 48, 59, 71, 84 350;
28, 37, 47, 58, 70, 83, 97, 112 532;
36, 46, 57, 69, 82, 96, 111, 127, 144 768;
45, 56, 68, 81, 95, 110, 126, 143, 161, 180 1065;
55, 67, 80, 94, 109, 125, 142, 160, 179, 199, 220 1430;
66, 79, 93, 108, 124, 141, 159, 178, 198, 219, 241, 264 1870;
78, 92, 107, 123, 140, 158, 177, 197, 218, 240, 263, 287, 312 2392.
-
a245300 n k = (n + k) * (n + k + 1) `div` 2 + k
a245300_row n = map (a245300 n) [0..n]
a245300_tabl = map a245300_row [0..]
a245300_list = concat a245300_tabl
-
[k + Binomial(n+k+1,2): k in [0..n], n in [0..15]]; // G. C. Greubel, Apr 01 2021
-
Table[k + Binomial[n+k+1,2], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 01 2021 *)
-
flatten([[k + binomial(n+k+1,2) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Apr 01 2021
A198392
a(n) = (6*n*(3*n+7)+(2*n+13)*(-1)^n+3)/16 + 1.
Original entry on oeis.org
2, 4, 12, 18, 31, 41, 59, 73, 96, 114, 142, 164, 197, 223, 261, 291, 334, 368, 416, 454, 507, 549, 607, 653, 716, 766, 834, 888, 961, 1019, 1097, 1159, 1242, 1308, 1396, 1466, 1559, 1633, 1731, 1809, 1912, 1994, 2102, 2188, 2301, 2391, 2509, 2603, 2726, 2824, 2952
Offset: 0
Cf. sequences related to the triangular spiral:
A022266,
A022267,
A027468,
A038764,
A045946,
A051682,
A062708,
A062725,
A062728,
A062741,
A064225,
A064226,
A081266-
A081268,
A081270-
A081272,
A081275 [incomplete list].
-
[(6*n*(3*n+7)+(2*n+13)*(-1)^n+3)/16+1: n in [0..50]];
-
LinearRecurrence[{1,2,-2,-1,1},{2,4,12,18,31},60] (* Harvey P. Dale, Jun 15 2022 *)
-
for(n=0, 50, print1((6*n*(3*n+7)+(2*n+13)*(-1)^n+3)/16+1", "));
A206306
Riordan array (1, x/(1-3*x+2*x^2)).
Original entry on oeis.org
1, 0, 1, 0, 3, 1, 0, 7, 6, 1, 0, 15, 23, 9, 1, 0, 31, 72, 48, 12, 1, 0, 63, 201, 198, 82, 15, 1, 0, 127, 522, 699, 420, 125, 18, 1, 0, 255, 1291, 2223, 1795, 765, 177, 21, 1, 0, 511, 3084, 6562, 6768, 3840, 1260, 238, 24, 1
Offset: 0
Triangle begins:
1;
0, 1;
0, 3, 1;
0, 7, 6, 1;
0, 15, 23, 9, 1;
0, 31, 72, 48, 12, 1;
0, 63, 201, 198, 82, 15, 1;
0, 127, 522, 699, 420, 125, 18, 1;
0, 255, 1291, 2223, 1795, 765, 177, 21, 1;
0, 511, 3084, 6562, 6768, 3840, 1260, 238, 24, 1;
0, 1023, 7181, 18324, 23276, 16758, 7266, 1932, 308, 27, 1;
-
function T(n,k) // T = A206306
if k lt 0 or k gt n then return 0;
elif k eq n then return 1;
elif k eq 0 then return 0;
else return 3*T(n-1, k) +T(n-1, k-1) -2*T(n-2, k);
end if; return T;
end function;
[T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 20 2022
-
# Uses function PMatrix from A357368.
PMatrix(10, n -> 2^n - 1); # Peter Luschny, Oct 09 2022
-
T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[k==n, 1, If[k==0, 0, 3*T[n- 1, k] +T[n-1, k-1] -2*T[n-2, k]]]];
Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 20 2022 *)
-
def T(n,k): # T = A206306
if (k<0 or k>n): return 0
elif (k==n): return 1
elif (k==0): return 0
else: return 3*T(n-1, k) +T(n-1, k-1) -2*T(n-2, k)
flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Dec 20 2022
Showing 1-6 of 6 results.
Comments