A144827
Partial products of successive terms of A017029; a(0)=1.
Original entry on oeis.org
1, 4, 44, 792, 19800, 633600, 24710400, 1136678400, 60243955200, 3614637312000, 242180699904000, 17921371792896000, 1451631115224576000, 127743538139762688000, 12135636123277455360000, 1237834884574300446720000, 134924002418598748692480000, 15651184280557454848327680000
Offset: 0
a(0)=1, a(1)=4, a(2)=4*11=44, a(3)=4*11*18=792, a(4)=4*11*18*25=19800, ...
-
[ 1 ] cat [ &*[ (7*k+4): k in [0..n] ]: n in [0..14] ]; // Klaus Brockhaus, Nov 10 2008
-
FoldList[Times,1,Range[4,150,7]] (* Harvey P. Dale, Apr 25 2014 *)
-
[1]+[4*7^(n-1)*rising_factorial(11/7, n-1) for n in (1..30)] # G. C. Greubel, Feb 22 2022
A080851
Square array of pyramidal numbers, read by antidiagonals.
Original entry on oeis.org
1, 1, 3, 1, 4, 6, 1, 5, 10, 10, 1, 6, 14, 20, 15, 1, 7, 18, 30, 35, 21, 1, 8, 22, 40, 55, 56, 28, 1, 9, 26, 50, 75, 91, 84, 36, 1, 10, 30, 60, 95, 126, 140, 120, 45, 1, 11, 34, 70, 115, 161, 196, 204, 165, 55, 1, 12, 38, 80, 135, 196, 252, 288, 285, 220, 66, 1, 13, 42, 90, 155, 231, 308, 372, 405, 385, 286, 78
Offset: 0
Array begins (n>=0, k>=0):
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ... A000217
1, 4, 10, 20, 35, 56, 84, 120, 165, 220, ... A000292
1, 5, 14, 30, 55, 91, 140, 204, 285, 385, ... A000330
1, 6, 18, 40, 75, 126, 196, 288, 405, 550, ... A002411
1, 7, 22, 50, 95, 161, 252, 372, 525, 715, ... A002412
1, 8, 26, 60, 115, 196, 308, 456, 645, 880, ... A002413
1, 9, 30, 70, 135, 231, 364, 540, 765, 1045, ... A002414
1, 10, 34, 80, 155, 266, 420, 624, 885, 1210, ... A007584
See
A257199 for another version of this array.
-
vector(vector(poly_coeff(Taylor((1+kx)/(1-x)^4,x,11),x,n),n,0,11),k,-1,10) VECTOR(VECTOR(comb(k+2,2)+comb(k+2,3)n, k, 0, 11), n, 0, 11)
-
A080851 := proc(n,k)
binomial(k+3,3)+(n-1)*binomial(k+2,3) ;
end proc:
seq( seq(A080851(d-k,k),k=0..d),d=0..12) ; # R. J. Mathar, Oct 01 2021
-
pyramidalFigurative[ ngon_, rank_] := (3 rank^2 + rank^3 (ngon - 2) - rank (ngon - 5))/6; Table[ pyramidalFigurative[n-k-1, k], {n, 4, 15}, {k, n-3}] // Flatten (* Robert G. Wilson v, Sep 15 2015 *)
A269044
a(n) = 13*n + 7.
Original entry on oeis.org
7, 20, 33, 46, 59, 72, 85, 98, 111, 124, 137, 150, 163, 176, 189, 202, 215, 228, 241, 254, 267, 280, 293, 306, 319, 332, 345, 358, 371, 384, 397, 410, 423, 436, 449, 462, 475, 488, 501, 514, 527, 540, 553, 566, 579, 592, 605, 618, 631, 644, 657, 670, 683, 696, 709, 722, 735
Offset: 0
-
[13*n+7: n in [0..60]];
-
13 Range[0, 60] + 7 (* or *) Range[7, 800, 13] (* or *) Table[13 n + 7, {n, 0, 60}]
LinearRecurrence[{2, -1}, {7, 20}, 60] (* Vincenzo Librandi, Feb 19 2016 *)
-
makelist(13*n+7, n, 0, 60);
-
vector(60, n, n--; 13*n+7)
-
[13*n+7 for n in (0..60)]
A101123
Numbers k for which 7*k + 11 is prime.
Original entry on oeis.org
0, 6, 8, 14, 18, 20, 24, 26, 36, 38, 48, 54, 60, 68, 78, 80, 84, 86, 90, 96, 104, 114, 116, 128, 138, 140, 144, 146, 150, 156, 158, 168, 170, 174, 188, 204, 206, 210, 216, 224, 228, 230, 236, 246, 248, 254, 260, 266, 270, 284, 288, 294, 296, 300, 306, 318, 320
Offset: 1
For k=6, 7*6 + 11 = 53 (prime).
For k=8, 7*8 + 11 = 67 (prime).
For k=14, 7*14 + 11 = 109 (prime).
A047350
Numbers that are congruent to {1, 2, 4} mod 7.
Original entry on oeis.org
1, 2, 4, 8, 9, 11, 15, 16, 18, 22, 23, 25, 29, 30, 32, 36, 37, 39, 43, 44, 46, 50, 51, 53, 57, 58, 60, 64, 65, 67, 71, 72, 74, 78, 79, 81, 85, 86, 88, 92, 93, 95, 99, 100, 102, 106, 107, 109, 113, 114, 116, 120, 121, 123, 127, 128, 130, 134, 135, 137, 141
Offset: 1
- Leonhard Euler, The Euler Archive, Theoremata circa divisores numerorum (E134), Novi Commentarii academiae scientiarum imperialis Petropolitanae, Volume 1 (1750), p. 40 (Theorem II, example 2).
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
-
[n : n in [0..150] | n mod 7 in [1, 2, 4]]; // Wesley Ivan Hurt, Jun 13 2016
-
A047350:=n->(21*n-21-6*cos(2*n*Pi/3)+4*sqrt(3)*sin(2*n*Pi/3))/9: seq(A047350(n), n=1..100); # Wesley Ivan Hurt, Jun 13 2016
-
Select[Range[0, 150], MemberQ[{1, 2, 4}, Mod[#, 7]] &] (* Wesley Ivan Hurt, Jun 13 2016 *)
-
a(n)=n\3*7+[-3,1,2][n%3+1] \\ Charles R Greathouse IV, Jul 31 2011
A134502
a(n) = Fibonacci(7n + 4).
Original entry on oeis.org
3, 89, 2584, 75025, 2178309, 63245986, 1836311903, 53316291173, 1548008755920, 44945570212853, 1304969544928657, 37889062373143906, 1100087778366101931, 31940434634990099905, 927372692193078999176, 26925748508234281076009
Offset: 0
Cf.
A000045,
A001906,
A001519,
A033887,
A015448,
A014445,
A033888,
A033889,
A033890,
A033891,
A102312,
A099100,
A134490-
A134495,
A103134,
A134497-
A134504.
A144650
Triangle read by rows where T(m,n) = 2m*n + m + n + 1.
Original entry on oeis.org
5, 8, 13, 11, 18, 25, 14, 23, 32, 41, 17, 28, 39, 50, 61, 20, 33, 46, 59, 72, 85, 23, 38, 53, 68, 83, 98, 113, 26, 43, 60, 77, 94, 111, 128, 145, 29, 48, 67, 86, 105, 124, 143, 162, 181, 32, 53, 74, 95, 116, 137, 158, 179, 200, 221, 35, 58, 81, 104, 127, 150, 173, 196, 219, 242, 265
Offset: 1
Triangle begins:
5;
8, 13;
11, 18, 25;
14, 23, 32, 41;
17, 28, 39, 50, 61;
20, 33, 46, 59, 72, 85;
23, 38, 53, 68, 83, 98, 113;
26, 43, 60, 77, 94, 111, 128, 145;
29, 48, 67, 86, 105, 124, 143, 162, 181;
32, 53, 74, 95, 116, 137, 158, 179, 200, 221; etc.
-
[2*n*k + n + k + 1: k in [1..n], n in [1..11]]; // Vincenzo Librandi, Nov 21 2012
-
T[n_,k_]:= 2 n*k + n + k + 1; Table[T[n, k], {n, 11}, {k, n}]//Flatten (* Vincenzo Librandi, Nov 21 2012 *)
-
flatten([[2*n*k+n+k+1 for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, Oct 14 2023
A163657
Triangle T(m,n) = 2*m*n + m + n + 8 read by rows.
Original entry on oeis.org
12, 15, 20, 18, 25, 32, 21, 30, 39, 48, 24, 35, 46, 57, 68, 27, 40, 53, 66, 79, 92, 30, 45, 60, 75, 90, 105, 120, 33, 50, 67, 84, 101, 118, 135, 152, 36, 55, 74, 93, 112, 131, 150, 169, 188, 39, 60, 81, 102, 123, 144, 165, 186, 207, 228, 42, 65, 88, 111, 134, 157, 180
Offset: 1
Triangle begins:
12;
15, 20;
18, 25, 32;
21, 30, 39, 48;
24, 35, 46, 57, 68;
27, 40, 53, 66, 79, 92;
30, 45, 60, 75, 90, 105, 120;
33, 50, 67, 84, 101, 118, 135, 152; etc.
Original entry on oeis.org
0, 6, 21, 48, 90, 150, 231, 336, 468, 630, 825, 1056, 1326, 1638, 1995, 2400, 2856, 3366, 3933, 4560, 5250, 6006, 6831, 7728, 8700, 9750, 10881, 12096, 13398, 14790, 16275, 17856, 19536, 21318, 23205, 25200, 27306, 29526, 31863, 34320, 36900, 39606, 42441, 45408, 48510
Offset: 0
The sequence is also provided by the row sums of the following triangle (see the fourth formula above):
. 0;
. 1, 5;
. 4, 7, 10;
. 9, 11, 13, 15;
. 16, 17, 18, 19, 20;
. 25, 25, 25, 25, 25, 25;
. 36, 35, 34, 33, 32, 31, 30;
. 49, 47, 45, 43, 41, 39, 37, 35;
. 64, 61, 58, 55, 52, 49, 46, 43, 40;
. 81, 77, 73, 69, 65, 61, 57, 53, 49, 45, etc.
First column is A000290.
Second column is A027690.
Third column is included in A189834.
Main diagonal is A008587; other parallel diagonals: A016921, A017029, A017077, A017245, etc.
Diagonal 1, 11, 25, 43, 65, 91, 121, ... is A161532.
Cf. similar sequences of the type n*(n+1)*(n+k)/2:
A002411 (k=0),
A006002 (k=1),
A027480 (k=2),
A077414 (k=3, with offset 1),
A212343 (k=4, without the initial 0), this sequence (k=5).
-
[n*(n+1)*(n+5)/2: n in [0..50]];
-
Table[n (n + 1) (n + 5)/2, {n, 0, 50}]
LinearRecurrence[{4,-6,4,-1},{0,6,21,48},50] (* Harvey P. Dale, Jul 18 2019 *)
-
vector(50, n, n--; n*(n+1)*(n+5)/2)
-
[n*(n+1)*(n+5)/2 for n in (0..50)]
A100775
a(n) = 97*n + 101.
Original entry on oeis.org
101, 198, 295, 392, 489, 586, 683, 780, 877, 974, 1071, 1168, 1265, 1362, 1459, 1556, 1653, 1750, 1847, 1944, 2041, 2138, 2235, 2332, 2429, 2526, 2623, 2720, 2817, 2914, 3011, 3108, 3205, 3302, 3399, 3496, 3593, 3690, 3787, 3884, 3981, 4078, 4175, 4272, 4369, 4466
Offset: 0
If n=1, then 97*1 + 101 = 198.
More terms from C. Ronaldo (aga_new_ac(AT)hotmail.com), Jan 19 2005
Showing 1-10 of 24 results.
Comments