A163672
Triangle T(n,m) = 2mn + m + n + 7 read by rows.
Original entry on oeis.org
11, 14, 19, 17, 24, 31, 20, 29, 38, 47, 23, 34, 45, 56, 67, 26, 39, 52, 65, 78, 91, 29, 44, 59, 74, 89, 104, 119, 32, 49, 66, 83, 100, 117, 134, 151, 35, 54, 73, 92, 111, 130, 149, 168, 187, 38, 59, 80, 101, 122, 143, 164, 185, 206, 227, 41, 64, 87, 110, 133, 156, 179
Offset: 1
Triangle begins:
11;
14, 19;
17, 24, 31;
20, 29, 38, 47;
23, 34, 45, 56, 67;
26, 39, 52, 65, 78, 91;
29, 44, 59, 74, 89, 104, 119;
32, 49, 66, 83, 100, 117, 134, 151;
-
[2*n*k + n + k + 7: k in [1..n], n in [1..11]]; // Vincenzo Librandi, Nov 20 2012
-
t[n_,k_]:=2 n*k + n + k + 7; Table[t[n, k], {n, 15}, {k, n}]//Flatten (* Vincenzo Librandi, Nov 20 2012 *)
-
for(n=1,10, for(m=1,n, print1(2*m*n + m + n + 7, ", "))) \\ G. C. Greubel, Aug 02 2017
A163674
Triangle T(n,m) = 2*m*n + m + n + 9 read by rows.
Original entry on oeis.org
13, 16, 21, 19, 26, 33, 22, 31, 40, 49, 25, 36, 47, 58, 69, 28, 41, 54, 67, 80, 93, 31, 46, 61, 76, 91, 106, 121, 34, 51, 68, 85, 102, 119, 136, 153, 37, 56, 75, 94, 113, 132, 151, 170, 189, 40, 61, 82, 103, 124, 145, 166, 187, 208, 229, 43, 66, 89, 112, 135, 158, 181
Offset: 1
Triangle begins:
13;
16, 21;
19, 26, 33;
22, 31, 40, 49;
25, 36, 47, 58, 69;
28, 41, 54, 67, 80, 93;
31, 46, 61, 76, 91, 106, 121;
34, 51, 68, 85, 102, 119, 136, 153;
-
[2*n*k + n + k + 9: k in [1..n], n in [1..11]]; // Vincenzo Librandi, Nov 20 2012
-
t[n_,k_]:=2 n*k + n + k + 9; Table[t[n, k], {n, 15}, {k, n}]//Flatten (* Vincenzo Librandi, Nov 20 2012 *)
-
for(n=1,10, for(m=1,n, print1(2*m*n + m + n + 9, ", "))) \\ G. C. Greubel, Aug 02 2017
A153047
Numbers n such that 2*n-15 is not a prime.
Original entry on oeis.org
12, 15, 18, 20, 21, 24, 25, 27, 30, 32, 33, 35, 36, 39, 40, 42, 45, 46, 48, 50, 51, 53, 54, 55, 57, 60, 63, 65, 66, 67, 68, 69, 70, 72, 74, 75, 78, 79, 80, 81, 84, 85, 87, 88, 90, 92, 93, 95, 96, 99, 100, 101, 102, 105, 108, 109, 110, 111, 112, 114, 115, 116
Offset: 1
A163652
Triangle read by rows where T(n,m)=2*m*n + m + n + 6.
Original entry on oeis.org
10, 13, 18, 16, 23, 30, 19, 28, 37, 46, 22, 33, 44, 55, 66, 25, 38, 51, 64, 77, 90, 28, 43, 58, 73, 88, 103, 118, 31, 48, 65, 82, 99, 116, 133, 150, 34, 53, 72, 91, 110, 129, 148, 167, 186, 37, 58, 79, 100, 121, 142, 163, 184, 205, 226, 40, 63, 86, 109, 132, 155, 178
Offset: 1
Triangle begins:
10;
13, 18;
16, 23, 30;
19, 28, 37, 46;
22, 33, 44, 55, 66;
25, 38, 51, 64, 77, 90;
28, 43, 58, 73, 88, 103, 118;
31, 48, 65, 82, 99, 116, 133, 150;
34, 53, 72, 91, 110, 129, 148, 167, 186;
37, 58, 79, 100, 121, 142, 163, 184, 205, 226;
40, 63, 86, 109, 132, 155, 178, 201, 224, 247, 270;
etc.
-
[2*n*k + n + k + 6: k in [1..n], n in [1..11]]; // Vincenzo Librandi, Nov 20 2012
-
t[n_,k_]:=2 n*k + n + k + 6; Table[t[n, k], {n, 15}, {k, n}]//Flatten (* Vincenzo Librandi, Nov 20 2012 *)
A163661
a(n) = n*(2*n^2 + 5*n + 17)/2.
Original entry on oeis.org
0, 12, 35, 75, 138, 230, 357, 525, 740, 1008, 1335, 1727, 2190, 2730, 3353, 4065, 4872, 5780, 6795, 7923, 9170, 10542, 12045, 13685, 15468, 17400, 19487, 21735, 24150, 26738, 29505, 32457, 35600, 38940, 42483, 46235, 50202, 54390, 58805, 63453
Offset: 0
-
CoefficientList[Series[x*(12-13*x+7*x^2)/(x-1)^4,{x,0,40}],x] (* or *) LinearRecurrence[{4, -6, 4, -1}, {0, 12, 35, 75}, 50](* Vincenzo Librandi, Mar 06 2012 *)
-
x='x+O('x^50); concat([0], Vec(x*(12-13*x+7*x^2)/(x-1)^4)) \\ G. C. Greubel, Aug 01 2017
Showing 1-5 of 5 results.
Comments