cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A269044 a(n) = 13*n + 7.

Original entry on oeis.org

7, 20, 33, 46, 59, 72, 85, 98, 111, 124, 137, 150, 163, 176, 189, 202, 215, 228, 241, 254, 267, 280, 293, 306, 319, 332, 345, 358, 371, 384, 397, 410, 423, 436, 449, 462, 475, 488, 501, 514, 527, 540, 553, 566, 579, 592, 605, 618, 631, 644, 657, 670, 683, 696, 709, 722, 735
Offset: 0

Views

Author

Bruno Berselli, Feb 18 2016

Keywords

Comments

After 7 (which corresponds to n=0), all terms belong to A090767 because a(n) = 3*n*2*1 + 2*(n*2+2*1+n*1) + (n+2+1).
This sequence is related to A152741 by the recurrence A152741(n+1) = (n+1)*a(n+1) - Sum_{k = 0..n} a(k).
Any square mod 13 is one of 0, 1, 3, 4, 9, 10 or 12 (A010376) but not 7, and for this reason there are no squares in the sequence. Likewise, any cube mod 13 is one of 0, 1, 5, 8 or 12, therefore no a(k) is a cube.
The sum of the squares of any two terms of the sequence is also a term of the sequence, that is: a(h)^2 + a(k)^2 = a(h*(13*h+14) + k*(13*k+14) + 7). Therefore: a(h)^2 + a(k)^2 > a(a( h*(h+1) + k*(k+1) )) for h+k > 0.
The primes of the sequence are listed in A140371.

Crossrefs

Cf. A010376, A022271 (partial sums), A088227, A090767, A140371, A152741.
Similar sequences with closed form (2*k-1)*n+k: A001489 (k=0), A000027 (k=1), A016789 (k=2), A016885 (k=3), A017029 (k=4), A017221 (k=5), A017461 (k=6), this sequence (k=7), A164284 (k=8).
Sequences of the form 13*n+q: A008595 (q=0), A190991 (q=1), A153080 (q=2), A127547 (q=4), A154609 (q=5), A186113 (q=6), this sequence (q=7), A269100 (q=11).

Programs

  • Magma
    [13*n+7: n in [0..60]];
    
  • Mathematica
    13 Range[0, 60] + 7 (* or *) Range[7, 800, 13] (* or *) Table[13 n + 7, {n, 0, 60}]
    LinearRecurrence[{2, -1}, {7, 20}, 60] (* Vincenzo Librandi, Feb 19 2016 *)
  • Maxima
    makelist(13*n+7, n, 0, 60);
    
  • PARI
    vector(60, n, n--; 13*n+7)
    
  • Sage
    [13*n+7 for n in (0..60)]

Formula

G.f.: (7 + 6*x)/(1 - x)^2.
a(n) = A088227(4*n+3).
a(n) = -A186113(-n-1).
Sum_{i=h..h+13*k} a(i) = a(h*(13*k + 1) + k*(169*k + 27)/2).
Sum_{i>=0} 1/a(i)^2 = 0.0257568950542502716970... = polygamma(1, 7/13)/13^2.
E.g.f.: exp(x)*(7 + 13*x). - Stefano Spezia, Aug 02 2021

A017462 a(n) = (11*n + 6)^2.

Original entry on oeis.org

36, 289, 784, 1521, 2500, 3721, 5184, 6889, 8836, 11025, 13456, 16129, 19044, 22201, 25600, 29241, 33124, 37249, 41616, 46225, 51076, 56169, 61504, 67081, 72900, 78961, 85264, 91809, 98596, 105625, 112896, 120409, 128164, 136161, 144400, 152881, 161604, 170569
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+6)^m: A017461 (m=1), this sequence (m=2), A017463 (m=3), A017464 (m=4), A017465 (m=5), A017466 (m=6), A017467 (m=7), A017468 (m=8), A017469 (m=9), A017470 (m=10), A017471 (m=11), A017472 (m=12).

Programs

Formula

From G. C. Greubel, Sep 19 2019: (Start)
G.f.: (36 +181*x +25*x^2)/(1-x)^3.
E.g.f.: (36 +253*x +121*x^2)*exp(x). (End)

A017463 a(n) = (11*n + 6)^3.

Original entry on oeis.org

216, 4913, 21952, 59319, 125000, 226981, 373248, 571787, 830584, 1157625, 1560896, 2048383, 2628072, 3307949, 4096000, 5000211, 6028568, 7189057, 8489664, 9938375, 11543176, 13312053, 15252992, 17373979, 19683000, 22188041, 24897088, 27818127, 30959144
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+6)^m: A017461 (m=1), A017462 (m=2), this sequence (m=3), A017464 (m=4), A017465 (m=5), A017466 (m=6), A017467 (m=7), A017468 (m=8), A017469 (m=9), A017470 (m=10), A017471 (m=11), A017472 (m=12).

Programs

  • GAP
    List([0..40], n-> (11*n+6)^3); # G. C. Greubel, Sep 19 2019
  • Magma
    [(11*n+6)^3: n in [0..40]]; // Vincenzo Librandi, Sep 03 2011
    
  • Maple
    seq((11*n+6)^3, n=0..40); # G. C. Greubel, Sep 19 2019
  • Mathematica
    (* From Harvey P. Dale, May 16 2012 : (Start) *)
    (11Range[0,40]+6)^3
    LinearRecurrence[{4,-6,4,-1}, {216,4913, 21952,59319}, 40] (* End *)
  • PARI
    vector(40, n, (11*n-5)^3) \\ G. C. Greubel, Sep 19 2019
    
  • Sage
    [(11*n+6)^3 for n in (0..40)] # G. C. Greubel, Sep 19 2019
    

Formula

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(0)=216, a(1)=4913, a(2)=21952, a(3)=59319. - Harvey P. Dale, May 16 2012
From G. C. Greubel, Sep 19 2019: (Start)
G.f.: (216 +4049*x +3596*x^2 +125*x^3)/(1-x)^4.
E.g.f.: (216 +4697*x +6171*x^2 +1331*x^3)*exp(x). (End)

A017464 a(n) = (11*n + 6)^4.

Original entry on oeis.org

1296, 83521, 614656, 2313441, 6250000, 13845841, 26873856, 47458321, 78074896, 121550625, 181063936, 260144641, 362673936, 492884401, 655360000, 855036081, 1097199376, 1387488001, 1731891456, 2136750625, 2608757776, 3154956561, 3782742016, 4499860561, 5314410000
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+6)^m: A017461 (m=1), A017462 (m=2), A017463 (m=3), this sequence (m=4), A017465 (m=5), A017466 (m=6), A017467 (m=7), A017468 (m=8), A017469 (m=9), A017470 (m=10), A017471 (m=11), A017472 (m=12).

Programs

  • GAP
    List([0..30], n-> (11*n+6)^4); # G. C. Greubel, Sep 19 2019
  • Magma
    [(11*n+6)^4: n in [0..30]]; // Vincenzo Librandi, Sep 03 2011
    
  • Maple
    seq((11*n+6)^4, n=0..30); # G. C. Greubel, Sep 19 2019
  • Mathematica
    (11*Range[30] -5)^4 (* G. C. Greubel, Sep 19 2019 *)
    LinearRecurrence[{5,-10,10,-5,1},{1296,83521,614656,2313441,6250000},30] (* Harvey P. Dale, Oct 11 2021 *)
  • PARI
    vector(30, n, (11*n-5)^4) \\ G. C. Greubel, Sep 19 2019
    
  • Sage
    [(11*n+5)^4 for n in (0..30)] # G. C. Greubel, Sep 19 2019
    

Formula

From G. C. Greubel, Sep 19 2019: (Start)
G.f.: (1296 +77041*x +210011*x^2 +62411*x^3 +625*x^4)/(1-x)^5.
E.g.f.: (1296 +82225*x +224455*x^2 +119790*x^3 +14641*x^4)*exp(x). (End)

A017465 a(n) = (11*n + 6)^5.

Original entry on oeis.org

7776, 1419857, 17210368, 90224199, 312500000, 844596301, 1934917632, 3939040643, 7339040224, 12762815625, 21003416576, 33038369407, 50049003168, 73439775749, 104857600000, 146211169851, 199690286432, 267785184193, 353305857024, 459401384375, 589579257376
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+6)^m: A017461 (m=1), A017462 (m=2), A017463 (m=3), A017464 (m=4), this sequence (m=5), A017466 (m=6), A017467 (m=7), A017468 (m=8), A017469 (m=9), A017470 (m=10), A017471 (m=11), A017472 (m=12).

Programs

Formula

G.f.: (7776 +1373201*x +8807866*x^2 +8104326*x^3 +1029826*x^4 +3125*x^5 )/(1-x)^6. - Colin Barker, Sep 17 2012
E.g.f.: (7776 +1412081*x +7189215*x^2 +7140815*x^3 +2049740*x^4 + 161051*x^5)*exp(x). - G. C. Greubel, Sep 19 2019

A017466 a(n) = (11*n + 6)^6.

Original entry on oeis.org

46656, 24137569, 481890304, 3518743761, 15625000000, 51520374361, 139314069504, 326940373369, 689869781056, 1340095640625, 2436396322816, 4195872914689, 6906762437184, 10942526586601, 16777216000000, 25002110044521, 36343632130624, 51682540549249, 72074394832896
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+6)^m: A017461 (m=1), A017462 (m=2), A017463 (m=3), A017464 (m=4), A017465 (m=5), this sequence (m=6), A017467 (m=7), A017468 (m=8), A017469 (m=9), A017470 (m=10), A017471 (m=11), A017472 (m=12).

Programs

  • GAP
    List([0..20], n-> (11*n+6)^6); # G. C. Greubel, Sep 19 2019
  • Magma
    [(11*n+6)^6: n in [0..20]]; // Vincenzo Librandi, Sep 04 2011
    
  • Maple
    seq((11*n+6)^6, n=0..20); # G. C. Greubel, Sep 19 2019
  • Mathematica
    (11 * Range[0, 20] + 6)^6 (* or *) LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {46656, 24137569, 481890304, 3518743761, 15625000000, 51520374361, 139314069504}, 20] (* Harvey P. Dale, Jan 19 2013 *)
  • PARI
    a(n)=(11*n+6)^6 \\ Charles R Greathouse IV, Nov 04 2017
    
  • Sage
    [(11*n+6)^6 for n in (0..20)] # G. C. Greubel, Sep 19 2019
    

Formula

a(0) = 46656, a(1) = 24137569, a(2) = 481890304, a(3) = 3518743761, a(4) = 15625000000, a(5) = 51520374361, a(6) = 139314069504, a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7). - Harvey P. Dale, Jan 19 2013
From G. C. Greubel, Sep 19 2019: (Start)
G.f.: (46656 +23810977*x +313907097*x^2 +650767622*x^3 +270308102*x^4 +16667841*x^5 +15625*x^6)/(1-x)^7.
E.g.f.: (46656 +24090913*x +216830911*x^2 +357573150*x^3 +181035965*x^4 +32371251*x^5 +1771561*x^6)*exp(x). (End)

A017467 a(n) = (11*n + 6)^7.

Original entry on oeis.org

279936, 410338673, 13492928512, 137231006679, 781250000000, 3142742836021, 10030613004288, 27136050989627, 64847759419264, 140710042265625, 282621973446656, 532875860165503, 953133216331392, 1630436461403549, 2684354560000000, 4275360817613091, 6614541047773568
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+6)^m: A017461 (m=1), A017462 (m=2), A017463 (m=3), A017464 (m=4), A017465 (m=5), A017466 (m=6), this sequence (m=7), A017468 (m=8), A017469 (m=9), A017470 (m=10), A017471 (m=11), A017472 (m=12).

Programs

Formula

From G. C. Greubel, Sep 19 2019: (Start)
G.f.: (279936 +408099185*x +10218057336*x^2 +40761385011*x^3 +38244574736 *x^4 +8315057055*x^5 +267810456*x^6 +78125*x^7)/(1-x)^8.
E.g.f.: (279936 +410058737*x +6336265551*x^2 +16330492871*x^3 + 12985102900*x^4 +3966041926*x^5 +483636153*x^6 +19487171*x^7)*exp(x). (End)

A017468 a(n) = (11*n + 6)^8.

Original entry on oeis.org

1679616, 6975757441, 377801998336, 5352009260481, 39062500000000, 191707312997281, 722204136308736, 2252292232139041, 6095689385410816, 14774554437890625, 32784148919812096, 67675234241018881
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+6)^m: A017461 (m=1), A017462 (m=2), A017463 (m=3), A017464 (m=4), A017465 (m=5), A017466 (m=6), A017467 (m=7), this sequence (m=8), A017469 (m=9), A017470 (m=10), A017471 (m=11), A017472 (m=12).

Programs

Formula

From G. C. Greubel, Sep 19 2019: (Start)
G.f.: (1679616 +6960640897*x +315080647543*x^2 +2202777455589*x^3 + 3909536602339*x^4 +1960512320323*x^5 +243788893317*x^6 +4291451671*x^7 + 390625*x^8)/(1-x)^9.
E.g.f.: (1679616 +6974077825*x +181926081535*x^2 +706588143030*x^3 + 828890566581*x^4 +384764689386*x^5 +78448264202*x^6 +6937432876*x^7 + 214358881*x^8)*exp(x). (End)

A017469 a(n) = (11*n + 6)^9.

Original entry on oeis.org

10077696, 118587876497, 10578455953408, 208728361158759, 1953125000000000, 11694146092834141, 51998697814228992, 186940255267540403, 572994802228616704, 1551328215978515625, 3802961274698203136
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+6)^m: A017461 (m=1), A017462 (m=2), A017463 (m=3), A017464 (m=4), A017465 (m=5), A017466 (m=6), A017467 (m=7), A017468 (m=8), this sequence (m=9), A017470 (m=10), A017471 (m=11), A017472 (m=12).

Programs

  • GAP
    List([0..20], n-> (11*n+6)^9); # G. C. Greubel, Sep 19 2019
  • Magma
    [(11*n+6)^9: n in [0..20]]; // Vincenzo Librandi, Sep 04 2011
    
  • Maple
    seq((11*n+6)^9, n=0..20); # G. C. Greubel, Sep 19 2019
  • Mathematica
    (11*Range[0,20]+6)^9 (* or *) LinearRecurrence[{10,-45,120,-210,252,-210, 120,-45,10,-1}, {10077696, 118587876497,10578455953408, 208728361158759, 1953125000000000,11694146092834141,51998697814228992,186940255267540403, 572994802228616704, 1551328215978515625}, 20] (* Harvey P. Dale, Jan 15 2019 *)
  • PARI
    vector(20, n, (11*n-5)^9) \\ G. C. Greubel, Sep 19 2019
    
  • Sage
    [(11*n+6)^9 for n in (0..20)] # G. C. Greubel, Sep 19 2019
    

Formula

From G. C. Greubel, Sep 19 2019: (Start)
G.f.: (10077696 +118487099537*x +9393030684758*x^2 +108279046743524*x^3 + 327643477452290*x^4 +311158545054314*x^5 +92052268491098*x^6 + 6938490608252*x^7 +68699945486*x^8 +1953125*x^9)/(1-x)^10.
E.g.f.: (10077696 +118577798801*x +5170645139055*x^2 +29558124475055*x^3 +49216997902380*x^4 +32588442284937*x^5 +9880686605790*x^6 + 1438737834930*x^7 +96461496450*x^8 +2357947691*x^9)*exp(x). (End)

A017470 a(n) = (11*n + 6)^10.

Original entry on oeis.org

60466176, 2015993900449, 296196766695424, 8140406085191601, 97656250000000000, 713342911662882601, 3743906242624487424, 15516041187205853449, 53861511409489970176, 162889462677744140625
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+6)^m: A017461 (m=1), A017462 (m=2), A017463 (m=3), A017464 (m=4), A017465 (m=5), A017466 (m=6), A017467 (m=7), A017468 (m=8), A017469 (m=9), this sequence (m=10), A017471 (m=11), A017472 (m=12).

Programs

Formula

From G. C. Greubel, Sep 19 2019:(Start)
G.f.: (60466176 +2015328772513*x +274024159430165*x^2 +4993111339147592* x^3 +24069986191404704*x^4 +38639279895450554*x^5 +21874532039020442*x^6 +4073880923146640*x^7 +193797041298488*x^8 +1099404205901*x^9 +9765625* x^10)/(1-x)^11.
E.g.f.: (60466176 +2015933434273*x +146082419680351*x^2 +1209643951056750 *x^3 +2785989264344605*x^4 +2529281956307337*x^5 +1069882300751187*x^6 + 228102792962880*x^7 +24893496850530*x^8 +1308660968505*x^9 +25937424601* x^10)*exp(x). (End)
Showing 1-10 of 19 results. Next