cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A026817 Duplicate of A022269.

Original entry on oeis.org

6, 23, 51, 90, 140, 201, 273, 356, 450, 555, 671, 798, 936, 1085, 1245, 1416, 1598, 1791, 1995, 2210, 2436, 2673, 2921, 3180, 3450, 3731, 4023, 4326, 4640, 4965, 5301, 5648, 6006, 6375, 6755, 7146, 7548, 7961, 8385, 8820, 9266, 9723, 10191
Offset: 1

Views

Author

Keywords

A022289 a(n) = n*(31*n + 1)/2.

Original entry on oeis.org

0, 16, 63, 141, 250, 390, 561, 763, 996, 1260, 1555, 1881, 2238, 2626, 3045, 3495, 3976, 4488, 5031, 5605, 6210, 6846, 7513, 8211, 8940, 9700, 10491, 11313, 12166, 13050, 13965, 14911, 15888, 16896, 17935
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. similar sequences of the form n*((2*k+1)*n + 1)/2: A000217 (k=0), A005449 (k=1), A005475 (k=2), A022265 (k=3), A022267 (k=4), A022269 (k=5), A022271 (k=6), A022273 (k=7), A022275 (k=8), A022277 (k=9), A022279 (k=10), A022281 (k=11), A022283 (k=12), A022285 (k=13), A022287 (k=14), this sequence (k=15).

Programs

Formula

a(n) = 31*n + a(n-1) - 15, for n>0, a(0)=0. - Vincenzo Librandi, Aug 04 2010
G.f.: x*(16 + 15*x)/(1 - x)^3 . - R. J. Mathar, Sep 02 2016
a(n) = A000217(16*n) - A000217(15*n). In general, n*((2*k+1)*n + 1)/2 = A000217((k+1)*n) - A000217(k*n). - Bruno Berselli, Oct 13 2016
E.g.f.: (x/2)*(31*x + 32)*exp(x). - G. C. Greubel, Aug 23 2017

A110449 Triangle read by rows: T(n,k) = n*((2*k+1)*n+1)/2, 0<=k<=n.

Original entry on oeis.org

0, 1, 2, 3, 7, 11, 6, 15, 24, 33, 10, 26, 42, 58, 74, 15, 40, 65, 90, 115, 140, 21, 57, 93, 129, 165, 201, 237, 28, 77, 126, 175, 224, 273, 322, 371, 36, 100, 164, 228, 292, 356, 420, 484, 548, 45, 126, 207, 288, 369, 450, 531, 612, 693, 774, 55, 155, 255, 355, 455, 555, 655, 755, 855, 955, 1055
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 21 2005

Keywords

Comments

Row sums give A110450; central terms give A110451;
T(n,0) = A000217(n);
T(n,1) = A005449(n) for n>0;
T(n,2) = A005475(n) for n>1;
T(n,3) = A022265(n) for n>2;
T(n,4) = A022267(n) for n>3;
T(n,5) = A022269(n) for n>4;
T(n,6) = A022271(n) for n>5;
T(n,7) = A022263(n) for n>6;
T(n+1,n-1) = A059270(n) for n>1;
T(n,n-1) = A081436(n) for n>1;
T(n,n) = A085786(n).

Examples

			Triangle starts:
0;
1, 2;
3, 7, 11;
6, 15, 24, 33;
10, 26, 42, 58, 74;
...
		

Crossrefs

Cf. A126890.

Programs

  • Mathematica
    Table[n*((2*k + 1)*n + 1)/2, {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Aug 23 2017 *)
  • PARI
    tabl(nn) = {for (n=0, nn, for (k=0, n, print1(n*((2*k+1)*n+1)/2, ", ");); print(););} \\ Michel Marcus, Jun 22 2015

Formula

T(n,k) = n*((2*k + 1)*n + 1)/2, 0 <= k <= n.

A254963 a(n) = n*(11*n + 3)/2.

Original entry on oeis.org

0, 7, 25, 54, 94, 145, 207, 280, 364, 459, 565, 682, 810, 949, 1099, 1260, 1432, 1615, 1809, 2014, 2230, 2457, 2695, 2944, 3204, 3475, 3757, 4050, 4354, 4669, 4995, 5332, 5680, 6039, 6409, 6790, 7182, 7585, 7999, 8424, 8860, 9307, 9765, 10234, 10714, 11205, 11707
Offset: 0

Views

Author

Bruno Berselli, Feb 11 2015

Keywords

Comments

This sequence provides the first differences of A254407 and the partial sums of A017473.
Also:
a(n) - n = A022269(n);
a(n) + n = n*(11*n+5)/2: 0, 8, 27, 57, 98, 150, 213, 287, ...;
a(n) - 2*n = A022268(n);
a(n) + 2*n = n*(11*n+7)/2: 0, 9, 29, 60, 102, 155, 219, 294, ...;
a(n) - 3*n = n*(11*n-3)/2: 0, 4, 19, 45, 82, 130, 189, 259, ...;
a(n) + 3*n = A211013(n);
a(n) - 4*n = A226492(n);
a(n) + 4*n = A152740(n);
a(n) - 5*n = A180223(n);
a(n) + 5*n = n*(11*n+13)/2: 0, 12, 35, 69, 114, 170, 237, 315, ...;
a(n) - 6*n = A051865(n);
a(n) + 6*n = n*(11*n+15)/2: 0, 13, 37, 72, 118, 175, 243, 322, ...;
a(n) - 7*n = A152740(n-1) with A152740(-1) = 0;
a(n) + 7*n = n*(11*n+17)/2: 0, 14, 39, 75, 122, 180, 249, 329, ...;
a(n) - n*(n-1)/2 = A168668(n);
a(n) + n*(n-1)/2 = A049453(n);
a(n) - n*(n+1)/2 = A202803(n);
a(n) + n*(n+1)/2 = A033580(n).

Crossrefs

Cf. A008729 and A218530 (seventh column); A017473, A254407.
Cf. similar sequences of the type 4*n^2 + k*n*(n+1)/2: A055999 (k=-7, n>6), A028552 (k=-6, n>2), A095794 (k=-5, n>1), A046092 (k=-4, n>0), A000566 (k=-3), A049450 (k=-2), A022264 (k=-1), A016742 (k=0), A022267 (k=1), A202803 (k=2), this sequence (k=3), A033580 (k=4).
Cf. A069125: (2*n+1)^2 + 3*n*(n+1)/2; A147875: n^2 + 3*n*(n+1)/2.

Programs

  • Magma
    [n*(11*n+3)/2: n in [0..50]];
    
  • Mathematica
    Table[n (11 n + 3)/2, {n, 0, 50}]
    LinearRecurrence[{3,-3,1},{0,7,25},50] (* Harvey P. Dale, Mar 25 2018 *)
  • Maxima
    makelist(n*(11*n+3)/2, n, 0, 50);
  • PARI
    vector(50, n, n--; n*(11*n+3)/2)
    
  • Sage
    [n*(11*n+3)/2 for n in (0..50)]
    

Formula

G.f.: x*(7 + 4*x)/(1 - x)^3.
From Elmo R. Oliveira, Dec 15 2024: (Start)
E.g.f.: exp(x)*x*(14 + 11*x)/2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A226492 a(n) = n*(11*n-5)/2.

Original entry on oeis.org

0, 3, 17, 42, 78, 125, 183, 252, 332, 423, 525, 638, 762, 897, 1043, 1200, 1368, 1547, 1737, 1938, 2150, 2373, 2607, 2852, 3108, 3375, 3653, 3942, 4242, 4553, 4875, 5208, 5552, 5907, 6273, 6650, 7038, 7437, 7847, 8268, 8700, 9143, 9597, 10062, 10538, 11025, 11523
Offset: 0

Views

Author

Bruno Berselli, Jun 11 2013

Keywords

Comments

Sequences of numbers of the form n*(n*k - k + 6)/2:
. k from 0 to 10, respectively: A008585, A055998, A005563, A045943, A014105, A005475, A033428, A022264, A033991, A062741, A147874;
. k=11: a(n);
. k=12: A094159;
. k=13: 0, 3, 19, 48, 90, 145, 213, 294, 388, 495, 615, 748, 894, ...;
. k=14: 0, 3, 20, 51, 96, 155, 228, 315, 416, 531, 660, 803, 960, ...;
. k=15: A152773;
. k=16: A139272;
. k=17: 0, 3, 23, 60, 114, 185, 273, 378, 500, 639, 795, 968, ...;
. k=18: A152751;
. k=19: 0, 3, 25, 66, 126, 205, 303, 420, 556, 711, 885, 1078, ...;
. k=20: 0, 3, 26, 69, 132, 215, 318, 441, 584, 747, 930, 1133, ...;
. k=21: A152759;
. k=22: 0, 3, 28, 75, 144, 235, 348, 483, 640, 819, 1020, 1243, ...;
. k=23: 0, 3, 29, 78, 150, 245, 363, 504, 668, 855, 1065, 1298, ...;
. k=24: A152767;
. k=25: 0, 3, 31, 84, 162, 265, 393, 546, 724, 927, 1155, 1408, ...;
. k=26: 0, 3, 32, 87, 168, 275, 408, 567, 752, 963, 1200, 1463, ...;
. k=27: A153783;
. k=28: A195021;
. k=29: 0, 3, 35, 96, 186, 305, 453, 630, 836, 1071, 1335, 1628, ...;
. k=30: A153448;
. k=31: 0, 3, 37, 102, 198, 325, 483, 672, 892, 1143, 1425, 1738, ...;
. k=32: 0, 3, 38, 105, 204, 335, 498, 693, 920, 1179, 1470, 1793, ...;
. k=33: A153875.
Also:
a(n) - n = A180223(n);
a(n) + n = n*(11*n-3)/2 = 0, 4, 19, 45, 82, 130, 189, 259, ...;
a(n) - 2*n = A051865(n);
a(n) + 2*n = A022268(n);
a(n) - 3*n = A152740(n-1);
a(n) + 3*n = A022269(n);
a(n) - 4*n = n*(11*n-13)/2 = 0, -1, 9, 30, 62, 105, 159, 224, ...;
a(n) + 4*n = A254963(n);
a(n) - n*(n-1)/2 = A147874(n+1);
a(n) + n*(n-1)/2 = A094159(n) (case k=12);
a(n) - n*(n-1) = A062741(n) (see above, this is the case k=9);
a(n) + n*(n-1) = n*(13*n-7)/2 (case k=13);
a(n) - n*(n+1)/2 = A135706(n);
a(n) + n*(n+1)/2 = A033579(n);
a(n) - n*(n+1) = A051682(n);
a(n) + n*(n+1) = A186030(n);
a(n) - n^2 = A062708(n);
a(n) + n^2 = n*(13*n-5)/2 = 0, 4, 21, 51, 94, 150, 219, ..., etc.
Sum of reciprocals of a(n), for n > 0: 0.47118857003113149692081665034891...

Crossrefs

Cf. sequences in Comments lines.
First differences are in A017425.

Programs

  • Magma
    [n*(11*n-5)/2: n in [0..50]];
    
  • Magma
    I:=[0,3,17]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..46]]; // Vincenzo Librandi, Aug 18 2013
    
  • Mathematica
    Table[n (11 n - 5)/2, {n, 0, 50}]
    CoefficientList[Series[x (3 + 8 x) / (1 - x)^3, {x, 0, 45}], x] (* Vincenzo Librandi, Aug 18 2013 *)
    LinearRecurrence[{3,-3,1},{0,3,17},50] (* Harvey P. Dale, Jan 14 2019 *)
  • PARI
    a(n)=n*(11*n-5)/2 \\ Charles R Greathouse IV, Sep 24 2015

Formula

G.f.: x*(3+8*x)/(1-x)^3.
a(n) + a(-n) = A033584(n).
From Elmo R. Oliveira, Dec 27 2024: (Start)
E.g.f.: exp(x)*x*(6 + 11*x)/2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
a(n) = n + A180223(n). (End)

A152740 11 times triangular numbers.

Original entry on oeis.org

0, 11, 33, 66, 110, 165, 231, 308, 396, 495, 605, 726, 858, 1001, 1155, 1320, 1496, 1683, 1881, 2090, 2310, 2541, 2783, 3036, 3300, 3575, 3861, 4158, 4466, 4785, 5115, 5456, 5808, 6171, 6545, 6930, 7326, 7733, 8151, 8580, 9020, 9471, 9933, 10406, 10890, 11385, 11891
Offset: 0

Views

Author

Omar E. Pol, Dec 12 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 11, ... and the same line from 0, in the direction 0, 33, ..., in the square spiral whose vertices are the generalized tridecagonal numbers A195313. Axis perpendicular to A195149 in the same spiral. - Omar E. Pol, Sep 18 2011
Sum of the numbers from 5*n to 6*n. - Wesley Ivan Hurt, Dec 22 2015

Crossrefs

Programs

Formula

a(n) = 11*n*(n+1)/2 = 11*A000217(n).
a(n) = a(n-1) + 11*n with n > 0, a(0)=0. - Vincenzo Librandi, Nov 26 2010
a(n) = A069125(n+1) - 1. - Omar E. Pol, Oct 03 2011
From Philippe Deléham, Mar 27 2013: (Start)
G.f.: 11*x/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2, a(0)=0, a(1)=11, a(2)=33.
a(n) = A218530(11*n+10).
a(n) = A211013(n)+n = A022269(n)+5*n = A022268(n)+6*n = A180223(n)+9*n = A051865(n)+10*n. (End)
a(n) = Sum_{i=5*n..6*n} i. - Wesley Ivan Hurt, Dec 22 2015
From Amiram Eldar, Feb 21 2023: (Start)
Sum_{n>=1} 1/a(n) = 2/11.
Sum_{n>=1} (-1)^(n+1)/a(n) = (4*log(2) - 2)/11.
Product_{n>=1} (1 - 1/a(n)) = -(11/(2*Pi))*cos(sqrt(19/11)*Pi/2).
Product_{n>=1} (1 + 1/a(n)) = (11/(2*Pi))*cos(sqrt(3/11)*Pi/2). (End)
E.g.f.: 11*exp(x)*x*(2 + x)/2. - Elmo R. Oliveira, Dec 25 2024

A211013 Second 13-gonal numbers: a(n) = n*(11*n+9)/2.

Original entry on oeis.org

0, 10, 31, 63, 106, 160, 225, 301, 388, 486, 595, 715, 846, 988, 1141, 1305, 1480, 1666, 1863, 2071, 2290, 2520, 2761, 3013, 3276, 3550, 3835, 4131, 4438, 4756, 5085, 5425, 5776, 6138, 6511, 6895, 7290, 7696, 8113, 8541, 8980, 9430, 9891, 10363
Offset: 0

Views

Author

Omar E. Pol, Aug 04 2012

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 31... and the line from 10, in the direction 10, 63,..., in the square spiral whose vertices are the generalized 13-gonal numbers A195313.

Crossrefs

Bisection of A195313.
Second k-gonal numbers (k=5..14): A005449, A014105, A147875, A045944, A179986, A033954, A062728, A135705, this sequence, A211014.
Cf. A051865.

Programs

Formula

G.f.: x*(10+x)/(1-x)^3. - Philippe Deléham, Mar 27 2013
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) with a(0) = 0, a(1) = 10, a(2) = 31. - Philippe Deléham, Mar 27 2013
a(n) = A051865(n) + 9n = A180223(n) + 8n = A022268(n) + 5n = A022269(n) + 4n = A152740(n) - n. - Philippe Deléham, Mar 27 2013
a(n) = A218530(11n+9). - Philippe Deléham, Mar 27 2013
E.g.f.: x*(20 + 11*x)*exp(x)/2. - G. C. Greubel, Jul 04 2019

A241016 Triangle read by rows: T(n, k) = sum of k-th row of n X n square filled with the numbers 1 through n^2 reading across rows left-to-right.

Original entry on oeis.org

1, 3, 7, 6, 15, 24, 10, 26, 42, 58, 15, 40, 65, 90, 115, 21, 57, 93, 129, 165, 201, 28, 77, 126, 175, 224, 273, 322, 36, 100, 164, 228, 292, 356, 420, 484, 45, 126, 207, 288, 369, 450, 531, 612, 693, 55, 155, 255, 355, 455, 555, 655, 755, 855, 955, 66, 187, 308, 429, 550
Offset: 1

Views

Author

Kival Ngaokrajang, Aug 08 2014

Keywords

Comments

See illustration in links.
The corresponding triangle with column sums is found in A251630. - Wolfdieter Lang, Dec 09 2014

Examples

			The triangle T(n, k) begins:
n\k  1   2   3   4   5   6   7   8   9  10 ...
1:   1
2:   3   7
3:   6  15  24
4:  10  26  42  58
5:  15  40  65  90 115
6:  21  57  93 129 165 201
7:  28  77 126 175 224 273 322
8:  36 100 164 228 292 356 420 484
9:  45 126 207 288 369 450 531 612 693
10: 55 155 255 355 455 555 655 755 855 955
... reformatted - _Wolfdieter Lang_, Dec 08 2014
		

Crossrefs

Diagonals: A081436, A059270, ...
Row sums: A037270.

Programs

  • Mathematica
    Table[Sum[n*(k - 1) + j, {j,1,n}], {n,1,10}, {k,1,n}] // Flatten (* G. C. Greubel, Aug 23 2017 *)
  • PARI
    trg(nn) = {for (n=1, nn, mm = matrix(n, n, i, j, j + n*(i-1)); for (i=1, n, print1(sum(j=1, n, mm[i, j]), ", ");); print(););} \\ Michel Marcus, Sep 15 2014

Formula

T(n, k) = Sum_{j=1..n} (n*(k-1)+ j), for n >= k >= 1. See the Michel Marcus program. - Wolfdieter Lang, Dec 08 2014
T(n, k) = binomial(n+1, 2) + n^2*(k-1). - Wolfdieter Lang, Dec 09 2014

Extensions

Edited. - Wolfdieter Lang, Dec 08 2014

A218530 Partial sums of floor(n/11).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 70, 74, 78, 82, 86, 90, 94, 98, 102, 106, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 171
Offset: 0

Views

Author

Philippe Deléham, Mar 27 2013

Keywords

Comments

Apart from the initial zeros, the same as A008729.

Examples

			As square array:
..0....0....0....0....0....0....0....0....0....0....0
..1....2....3....4....5....6....7....8....9...10...11
.13...15...17...19...21...23...25...27...29...31...33
.36...39...42...45...48...51...54...57...60...63...66
.70...74...78...82...86...90...94...98..102..106..110
115..120..125..130..135..140..145..150..155..160..165
171..177..183..189..195..201..207..213..219..225..231
238..245..252..259..266..273..280..287..294..301..308
316..324..332..340..348..356..364..372..380..388..396
405..414..423..432..441..450..459..468..477..486..495
505..515..525..535..545..555..565..575..585..595..605
...
		

Crossrefs

Formula

a(11n) = A051865(n).
a(11n+1) = A180223(n).
a(11n+4) = A022268(n).
a(11n+5) = A022269(n).
a(11n+6) = A254963(n)
a(11n+9) = A211013(n).
a(11n+10) = A152740(n).
G.f.: x^11/((1-x)^2*(1-x^11)).

A008729 Molien series for 3-dimensional group [2, n] = *22n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 70, 74, 78, 82, 86, 90, 94, 98, 102, 106, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 171, 177, 183, 189, 195, 201, 207, 213, 219
Offset: 0

Views

Author

Keywords

Examples

			..1....2....3....4....5....6....7....8....9...10...11
.13...15...17...19...21...23...25...27...29...31...33
.36...39...42...45...48...51...54...57...60...63...66
.70...74...78...82...86...90...94...98..102..106..110
115..120..125..130..135..140..145..150..155..160..165
171..177..183..189..195..201..207..213..219..225..231
238..245..252..259..266..273..280..287..294..301..308
316..324..332..340..348..356..364..372..380..388..396
405..414..423..432..441..450..459..468..477..486..495
505..515..525..535..545..555..565..575..585..595..605
...
The first six columns are A051865, A180223, A022268, A022269, A211013, A152740.
- _Philippe Deléham_, Apr 03 2013
		

Crossrefs

Programs

  • GAP
    a:=[1,2,3,4,5,6,7,8,9,10,11,13,15];; for n in [14..70] do a[n]:=2*a[n-1]-a[n-2]+a[n-11]-2*a[n-12]+a[n-13]; od; a; # G. C. Greubel, Jul 30 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/((1-x)^2*(1-x^11)) )); // G. C. Greubel, Jul 30 2019
    
  • Maple
    g:= 1/((1-x)^2*(1-x^11)); gser:= series(g, x=0,72); seq(coeff(gser, x, n), n=0..70); # modified by G. C. Greubel, Jul 30 2019
  • Mathematica
    CoefficientList[Series[1/((1-x)^2*(1-x^11)), {x,0,70}], x] (* Vincenzo Librandi, Jun 11 2013 *)
  • PARI
    my(x='x+O('x^70)); Vec(1/((1-x)^2*(1-x^11))) \\ G. C. Greubel, Jul 30 2019
    
  • Sage
    (1/((1-x)^2*(1-x^11))).series(x, 70).coefficients(x, sparse=False) # G. C. Greubel, Jul 30 2019
    

Formula

From Mitch Harris, Sep 08 2008: (Start)
a(n) = Sum_{j=0..n+11} floor(j/11).
a(n-11) = (1/2)*floor(n/11)*(2*n - 9 - 11*floor(n/11)). (End)
a(n) = A218530(n+11). - Philippe Deléham, Apr 03 2013
From Chai Wah Wu, Jul 08 2016: (Start)
a(n) = 2*a(n-1) - a(n-2) + a(n-11) - 2*a(n-12) + a(n-13) for n > 12.
G.f.: 1/(1 - 2*x + x^2 - x^11 + 2*x^12 - x^13) = 1/((1-x)^3 *(1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^10)). (End)

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Mar 14 2010
Showing 1-10 of 11 results. Next