cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A000326 Pentagonal numbers: a(n) = n*(3*n-1)/2.

Original entry on oeis.org

0, 1, 5, 12, 22, 35, 51, 70, 92, 117, 145, 176, 210, 247, 287, 330, 376, 425, 477, 532, 590, 651, 715, 782, 852, 925, 1001, 1080, 1162, 1247, 1335, 1426, 1520, 1617, 1717, 1820, 1926, 2035, 2147, 2262, 2380, 2501, 2625, 2752, 2882, 3015, 3151
Offset: 0

Views

Author

Keywords

Comments

The average of the first n (n > 0) pentagonal numbers is the n-th triangular number. - Mario Catalani (mario.catalani(AT)unito.it), Apr 10 2003
a(n) is the sum of n integers starting from n, i.e., 1, 2 + 3, 3 + 4 + 5, 4 + 5 + 6 + 7, etc. - Jon Perry, Jan 15 2004
Partial sums of 1, 4, 7, 10, 13, 16, ... (1 mod 3), a(2k) = k(6k-1), a(2k-1) = (2k-1)(3k-2). - Jon Perry, Sep 10 2004
Starting with offset 1 = binomial transform of [1, 4, 3, 0, 0, 0, ...]. Also, A004736 * [1, 3, 3, 3, ...]. - Gary W. Adamson, Oct 25 2007
If Y is a 3-subset of an n-set X then, for n >= 4, a(n-3) is the number of 4-subsets of X having at least two elements in common with Y. - Milan Janjic, Nov 23 2007
Solutions to the duplication formula 2*a(n) = a(k) are given by the index pairs (n, k) = (5,7), (5577, 7887), (6435661, 9101399), etc. The indices are integer solutions to the pair of equations 2(6n-1)^2 = 1 + y^2, k = (1+y)/6, so these n can be generated from the subset of numbers [1+A001653(i)]/6, any i, where these are integers, confined to the cases where the associated k=[1+A002315(i)]/6 are also integers. - R. J. Mathar, Feb 01 2008
a(n) is a binomial coefficient C(n,4) (A000332) if and only if n is a generalized pentagonal number (A001318). Also see A145920. - Matthew Vandermast, Oct 28 2008
Even octagonal numbers divided by 8. - Omar E. Pol, Aug 18 2011
Sequence found by reading the line from 0, in the direction 0, 5, ... and the line from 1, in the direction 1, 12, ..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. - Omar E. Pol, Sep 08 2011
The hyper-Wiener index of the star-tree with n edges (see A196060, example). - Emeric Deutsch, Sep 30 2011
More generally the n-th k-gonal number is equal to n + (k-2)*A000217(n-1), n >= 1, k >= 3. In this case k = 5. - Omar E. Pol, Apr 06 2013
Note that both Euler's pentagonal theorem for the partition numbers and Euler's pentagonal theorem for the sum of divisors refer more exactly to the generalized pentagonal numbers, not this sequence. For more information see A001318, A175003, A238442. - Omar E. Pol, Mar 01 2014
The Fuss-Catalan numbers are Cat(d,k)= [1/(k*(d-1)+1)]*binomial(k*d,k) and enumerate the number of (d+1)-gon partitions of a (k*(d-1)+2)-gon (cf. Schuetz and Whieldon link). a(n)= Cat(n,3), so enumerates the number of (n+1)-gon partitions of a (3*(n-1)+2)-gon. Analogous sequences are A100157 (k=4) and A234043 (k=5). - Tom Copeland, Oct 05 2014
Binomial transform of (0, 1, 3, 0, 0, 0, ...) (A169585 with offset 1) and second partial sum of (0, 1, 3, 3, 3, ...). - Gary W. Adamson, Oct 05 2015
For n > 0, a(n) is the number of compositions of n+8 into n parts avoiding parts 2 and 3. - Milan Janjic, Jan 07 2016
a(n) is also the number of edges in the Mycielskian of the complete graph K[n]. Indeed, K[n] has n vertices and n(n-1)/2 edges. Then its Mycielskian has n + 3n(n-1)/2 = n(3n-1)/2. See p. 205 of the West reference. - Emeric Deutsch, Nov 04 2016
Sum of the numbers from n to 2n-1. - Wesley Ivan Hurt, Dec 03 2016
Also the number of maximal cliques in the n-Andrásfai graph. - Eric W. Weisstein, Dec 01 2017
Coefficients in the hypergeometric series identity 1 - 5*(x - 1)/(2*x + 1) + 12*(x - 1)*(x - 2)/((2*x + 1)*(2*x + 2)) - 22*(x - 1)*(x - 2)*(x - 3)/((2*x + 1)*(2*x + 2)*(2*x + 3)) + ... = 0, valid for Re(x) > 1. Cf. A002412 and A002418. Column 2 of A103450. - Peter Bala, Mar 14 2019
A generalization of the Comment dated Apr 10 2003 follows. (k-3)*A000292(n-2) plus the average of the first n (2k-1)-gonal numbers is the n-th k-gonal number. - Charlie Marion, Nov 01 2020
a(n+1) is the number of Dyck paths of size (3,3n+1); i.e., the number of NE lattice paths from (0,0) to (3,3n+1) which stay above the line connecting these points. - Harry Richman, Jul 13 2021
a(n) is the largest sum of n positive integers x_1, ..., x_n such that x_i | x_(i+1)+1 for each 1 <= i <= n, where x_(n+1) = x_1. - Yifan Xie, Feb 21 2025

Examples

			Illustration of initial terms:
.
.                                       o
.                                     o o
.                          o        o o o
.                        o o      o o o o
.                o     o o o    o o o o o
.              o o   o o o o    o o o o o
.        o   o o o   o o o o    o o o o o
.      o o   o o o   o o o o    o o o o o
.  o   o o   o o o   o o o o    o o o o o
.
.  1    5     12       22           35
- _Philippe Deléham_, Mar 30 2013
		

References

  • Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, pages 2 and 311.
  • Raymond Ayoub, An Introduction to the Analytic Theory of Numbers, Amer. Math. Soc., 1963; p. 129.
  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 189.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 38, 40.
  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 1.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.6 Figurate Numbers, p. 291.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 284.
  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 64.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 52-53, 129-130, 132.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 7-10.
  • André Weil, Number theory: an approach through history; from Hammurapi to Legendre, Birkhäuser, Boston, 1984; see p. 186.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, 1987, pp. 98-100.
  • Douglas B. West, Introduction to Graph Theory, 2nd ed., Prentice-Hall, NJ, 2001.

Crossrefs

The generalized pentagonal numbers b*n+3*n*(n-1)/2, for b = 1 through 12, form sequences A000326, A005449, A045943, A115067, A140090, A140091, A059845, A140672, A140673, A140674, A140675, A151542.
Cf. A001318 (generalized pentagonal numbers), A049452, A033570, A010815, A034856, A051340, A004736, A033568, A049453, A002411 (partial sums), A033579.
See A220083 for a list of numbers of the form n*P(s,n)-(n-1)*P(s,n-1), where P(s,n) is the n-th polygonal number with s sides.
Cf. A240137: sum of n consecutive cubes starting from n^3.
Cf. similar sequences listed in A022288.
Partial sums of A016777.

Programs

  • GAP
    List([0..50],n->n*(3*n-1)/2); # Muniru A Asiru, Mar 18 2019
    
  • Haskell
    a000326 n = n * (3 * n - 1) `div` 2  -- Reinhard Zumkeller, Jul 07 2012
    
  • Magma
    [n*(3*n-1)/2 : n in [0..100]]; // Wesley Ivan Hurt, Oct 15 2015
    
  • Maple
    A000326 := n->n*(3*n-1)/2: seq(A000326(n), n=0..100);
    A000326:=-(1+2*z)/(z-1)**3; # Simon Plouffe in his 1992 dissertation
    a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=2*a[n-1]-a[n-2]+3 od: seq(a[n], n=0..50); # Miklos Kristof, Zerinvary Lajos, Feb 18 2008
  • Mathematica
    Table[n (3 n - 1)/2, {n, 0, 60}] (* Stefan Steinerberger, Apr 01 2006 *)
    Array[# (3 # - 1)/2 &, 47, 0] (* Zerinvary Lajos, Jul 10 2009 *)
    LinearRecurrence[{3, -3, 1}, {0, 1, 5}, 61] (* Harvey P. Dale, Dec 27 2011 *)
    pentQ[n_] := IntegerQ[(1 + Sqrt[24 n + 1])/6]; pentQ[0] = True; Select[Range[0, 3200], pentQ@# &] (* Robert G. Wilson v, Mar 31 2014 *)
    Join[{0}, Accumulate[Range[1, 312, 3]]] (* Harvey P. Dale, Mar 26 2016 *)
    (* For Mathematica 10.4+ *) Table[PolygonalNumber[RegularPolygon[5], n], {n, 0, 46}] (* Arkadiusz Wesolowski, Aug 27 2016 *)
    CoefficientList[Series[x (-1 - 2 x)/(-1 + x)^3, {x, 0, 20}], x] (* Eric W. Weisstein, Dec 01 2017 *)
    PolygonalNumber[5, Range[0, 20]] (* Eric W. Weisstein, Dec 01 2017 *)
  • PARI
    a(n)=n*(3*n-1)/2
    
  • PARI
    vector(100, n, n--; binomial(3*n, 2)/3) \\ Altug Alkan, Oct 06 2015
    
  • PARI
    is_a000326(n) = my(s); n==0 || (issquare (24*n+1, &s) && s%6==5); \\ Hugo Pfoertner, Aug 03 2023
    
  • Python
    # Intended to compute the initial segment of the sequence, not isolated terms.
    def aList():
         x, y = 1, 1
         yield 0
         while True:
             yield x
             x, y = x + y + 3, y + 3
    A000326 = aList()
    print([next(A000326) for i in range(47)]) # Peter Luschny, Aug 04 2019

Formula

Product_{m > 0} (1 - q^m) = Sum_{k} (-1)^k*x^a(k). - Paul Barry, Jul 20 2003
G.f.: x*(1+2*x)/(1-x)^3.
E.g.f.: exp(x)*(x+3*x^2/2).
a(n) = n*(3*n-1)/2.
a(-n) = A005449(n).
a(n) = binomial(3*n, 2)/3. - Paul Barry, Jul 20 2003
a(n) = A000290(n) + A000217(n-1). - Lekraj Beedassy, Jun 07 2004
a(0) = 0, a(1) = 1; for n >= 2, a(n) = 2*a(n-1) - a(n-2) + 3. - Miklos Kristof, Mar 09 2005
a(n) = Sum_{k=1..n} (2*n - k). - Paul Barry, Aug 19 2005
a(n) = 3*A000217(n) - 2*n. - Lekraj Beedassy, Sep 26 2006
a(n) = A126890(n, n-1) for n > 0. - Reinhard Zumkeller, Dec 30 2006
a(n) = A049452(n) - A022266(n) = A033991(n) - A005476(n). - Zerinvary Lajos, Jun 12 2007
Equals A034856(n) + (n - 1)^2. Also equals A051340 * [1,2,3,...]. - Gary W. Adamson, Jul 27 2007
a(n) = binomial(n+1, 2) + 2*binomial(n, 2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), a(0) = 0, a(1) = 1, a(2) = 5. - Jaume Oliver Lafont, Dec 02 2008
a(n) = a(n-1) + 3*n-2 with n > 0, a(0)=0. - Vincenzo Librandi, Nov 20 2010
a(n) = A000217(n) + 2*A000217(n-1). - Vincenzo Librandi, Nov 20 2010
a(n) = A014642(n)/8. - Omar E. Pol, Aug 18 2011
a(n) = A142150(n) + A191967(n). - Reinhard Zumkeller, Jul 07 2012
a(n) = (A000290(n) + A000384(n))/2 = (A000217(n) + A000566(n))/2 = A049450(n)/2. - Omar E. Pol, Jan 11 2013
a(n) = n*A000217(n) - (n-1)*A000217(n-1). - Bruno Berselli, Jan 18 2013
a(n) = A005449(n) - n. - Philippe Deléham, Mar 30 2013
From Oskar Wieland, Apr 10 2013: (Start)
a(n) = a(n+1) - A016777(n),
a(n) = a(n+2) - A016969(n),
a(n) = a(n+3) - A016777(n)*3 = a(n+3) - A017197(n),
a(n) = a(n+4) - A016969(n)*2 = a(n+4) - A017641(n),
a(n) = a(n+5) - A016777(n)*5,
a(n) = a(n+6) - A016969(n)*3,
a(n) = a(n+7) - A016777(n)*7,
a(n) = a(n+8) - A016969(n)*4,
a(n) = a(n+9) - A016777(n)*9. (End)
a(n) = A000217(2n-1) - A000217(n-1), for n > 0. - Ivan N. Ianakiev, Apr 17 2013
a(n) = A002411(n) - A002411(n-1). - J. M. Bergot, Jun 12 2013
Sum_{n>=1} a(n)/n! = 2.5*exp(1). - Richard R. Forberg, Jul 15 2013
a(n) = floor(n/(exp(2/(3*n)) - 1)), for n > 0. - Richard R. Forberg, Jul 27 2013
From Vladimir Shevelev, Jan 24 2014: (Start)
a(3*a(n) + 4*n + 1) = a(3*a(n) + 4*n) + a(3*n+1).
A generalization. Let {G_k(n)}_(n >= 0) be sequence of k-gonal numbers (k >= 3). Then the following identity holds: G_k((k-2)*G_k(n) + c(k-3)*n + 1) = G_k((k-2)*G_k(n) + c(k-3)*n) + G_k((k-2)*n + 1), where c = A000124. (End)
A242357(a(n)) = 1 for n > 0. - Reinhard Zumkeller, May 11 2014
Sum_{n>=1} 1/a(n)= (1/3)*(9*log(3) - sqrt(3)*Pi). - Enrique Pérez Herrero, Dec 02 2014. See the decimal expansion A244641.
a(n) = (A000292(6*n+k-1)-A000292(k))/(6*n-1)-A000217(3*n+k), for any k >= 0. - Manfred Arens, Apr 26 2015 [minor edits from Wolfdieter Lang, May 10 2015]
a(n) = A258708(3*n-1,1) for n > 0. - Reinhard Zumkeller, Jun 23 2015
a(n) = A007584(n) - A245301(n-1), for n > 0. - Manfred Arens, Jan 31 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*(sqrt(3)*Pi - 6*log(2))/3 = 0.85501000622865446... - Ilya Gutkovskiy, Jul 28 2016
a(m+n) = a(m) + a(n) + 3*m*n. - Etienne Dupuis, Feb 16 2017
In general, let P(k,n) be the n-th k-gonal number. Then P(k,m+n) = P(k,m) + (k-2)mn + P(k,n). - Charlie Marion, Apr 16 2017
a(n) = A023855(2*n-1) - A023855(2*n-2). - Luc Rousseau, Feb 24 2018
a(n) = binomial(n,2) + n^2. - Pedro Caceres, Jul 28 2019
Product_{n>=2} (1 - 1/a(n)) = 3/5. - Amiram Eldar, Jan 21 2021
(n+1)*(a(n^2) + a(n^2+1) + ... + a(n^2+n)) = n*(a(n^2+n+1) + ... + a(n^2+2n)). - Charlie Marion, Apr 28 2024
a(n) = Sum_{k = 0..3*n} (-1)^(n+k+1) * binomial(k, 2)*binomial(3*n+k-1, 2*k). - Peter Bala, Nov 04 2024

Extensions

Incorrect example removed by Joerg Arndt, Mar 11 2010

A005476 a(n) = n*(5*n - 1)/2.

Original entry on oeis.org

0, 2, 9, 21, 38, 60, 87, 119, 156, 198, 245, 297, 354, 416, 483, 555, 632, 714, 801, 893, 990, 1092, 1199, 1311, 1428, 1550, 1677, 1809, 1946, 2088, 2235, 2387, 2544, 2706, 2873, 3045, 3222, 3404, 3591
Offset: 0

Views

Author

Keywords

Comments

a(n) is half the number of ways to divide an n X n square into 3 rectangles whose side-lengths are integers. See Matthew Scroggs link. - George Witty, Feb 06 2024

Crossrefs

Cf. numbers of the form n*(n*k-k+4)/2 listed in A226488.
Cf. similar sequences listed in A022288.

Programs

Formula

a(n) = C(5*n,2)/5 for n>=0. - Zerinvary Lajos, Jan 02 2007
a(n) = A033991(n) - A000326(n). - Zerinvary Lajos, Jun 11 2007
a(n) = a(n-1) + 5*n - 3 for n>0, a(0)=0. - Vincenzo Librandi, Nov 18 2010
a(n) = A000217(n) + A000384(n) = A000290(n) + A000326(n). - Omar E. Pol, Jan 11 2013
a(n) = A130520(5*n+1). - Philippe Deléham, Mar 26 2013
a(n) = A033994(n) - A033994(n-1). - J. M. Bergot, Jun 12 2013
From Bruno Berselli, Oct 17 2016: (Start)
G.f.: x*(2 + 3*x)/(1 - x)^3.
a(n) = A000217(3*n-1) - A000217(2*n-1). (End)
E.g.f.: x*(4 + 5*x)*exp(x)/2. - G. C. Greubel, Jul 30 2019
Sum_{n>=1} 1/a(n) = 2 * A294833. - Amiram Eldar, Nov 16 2020
From Leo Tavares, Nov 20 2021: (Start)
a(n) = A016754(n) - A133694(n+1). See Triangulated Diamonds illustration.
a(n) = A000290(n) + A000217(n) + 2*A000217(n-1)
a(n) = 2*A000217(n) + 3*A000217(n-1). (End)

A022264 a(n) = n*(7*n - 1)/2.

Original entry on oeis.org

0, 3, 13, 30, 54, 85, 123, 168, 220, 279, 345, 418, 498, 585, 679, 780, 888, 1003, 1125, 1254, 1390, 1533, 1683, 1840, 2004, 2175, 2353, 2538, 2730, 2929, 3135, 3348, 3568, 3795, 4029, 4270, 4518, 4773, 5035, 5304, 5580, 5863, 6153, 6450, 6754, 7065, 7383
Offset: 0

Views

Author

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 13, ..., and the parallel line from 3, in the direction 3, 30, ..., in the square spiral whose edges have length A195019 and whose vertices are the numbers A195020. - Omar E. Pol, Sep 09 2011

Crossrefs

Cf. sequences listed in A254963.
Cf. similar sequences listed in A022288.

Programs

Formula

a(n) = C(7*n,2)/7, n >= 0. - Zerinvary Lajos, Jan 02 2007
a(n) = A049450(n) + A000217(n). - Reinhard Zumkeller, Oct 09 2008
a(n) = 7*n + a(n-1) - 4 for n > 0, a(0)=0. - Vincenzo Librandi, Aug 04 2010
a(n) = (2*n)^2 - n*(n+1)/2 = A016742(n) - A000217(n). - Philippe Deléham, Mar 08 2013
a(n) = A174738(7*n+2). - Philippe Deléham, Mar 26 2013
G.f.: x*(3 + 4*x)/(1 - x)^3. - R. J. Mathar, Aug 04 2016
a(n) = A000217(4*n-1) - A000217(3*n-1). - Bruno Berselli, Oct 17 2016
a(n) = (1/5) * Sum_{i=n..(6*n-1)} i. - Wesley Ivan Hurt, Dec 04 2016
E.g.f.: (1/2)*x*(7*x + 6)*exp(x). - G. C. Greubel, Aug 19 2017
a(n) = A005449(n) + A000384(n). See Crysta-gons illustration. - Leo Tavares, Nov 21 2021

A022266 a(n) = n*(9*n - 1)/2.

Original entry on oeis.org

0, 4, 17, 39, 70, 110, 159, 217, 284, 360, 445, 539, 642, 754, 875, 1005, 1144, 1292, 1449, 1615, 1790, 1974, 2167, 2369, 2580, 2800, 3029, 3267, 3514, 3770, 4035, 4309, 4592, 4884, 5185, 5495, 5814, 6142, 6479, 6825, 7180, 7544, 7917, 8299, 8690, 9090, 9499
Offset: 0

Views

Author

Keywords

Comments

From Floor van Lamoen, Jul 21 2001: (Start)
Write 0,1,2,3,4,... in a triangular spiral, then a(n) is the sequence found by reading the line from 0 in the direction 0,4,...
The spiral begins:
15
/ \
16 14
/ \
17 3 13
/ / \ \
18 4 2 12
/ / \ \
19 5 0---1 11
/ / \
20 6---7---8---9--10
(End)
a(n) with n>0 are the numbers with period length 3 in Bulgarian and Mancala solitaire. - Paul Weisenhorn Jan 29 2022

Crossrefs

Cf. similar sequences listed in A022288.

Programs

Formula

a(n) = binomial(9*n,2)/9 for n >= 0. - Zerinvary Lajos, Jan 02 2007
a(n) = A049452(n) - A000326(n). - Zerinvary Lajos, Jun 12 2007
a(n) = 9*n + a(n-1) - 5 for n > 0, a(0)=0. - Vincenzo Librandi, Aug 04 2010
G.f.: x*(4 + 5*x)/(1 - x)^3. - Colin Barker, Feb 14 2012
a(n) = A218470(9*n+3). - Philippe Deléham, Mar 27 2013
a(n) = A000217(5*n-1) - A000217(4*n-1). - Bruno Berselli, Oct 17 2016
From Wesley Ivan Hurt, Dec 04 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
a(n) = (1/7) * Sum_{i=n..(8*n-1)} i. (End)
E.g.f.: (x/2)*(9*x + 8)*exp(x). - G. C. Greubel, Aug 24 2017
a(n) = A000326(3*n) / 3. - Joerg Arndt, May 04 2021

A022268 a(n) = n*(11*n - 1)/2.

Original entry on oeis.org

0, 5, 21, 48, 86, 135, 195, 266, 348, 441, 545, 660, 786, 923, 1071, 1230, 1400, 1581, 1773, 1976, 2190, 2415, 2651, 2898, 3156, 3425, 3705, 3996, 4298, 4611, 4935, 5270, 5616, 5973, 6341, 6720, 7110, 7511, 7923, 8346, 8780, 9225, 9681, 10148, 10626, 11115
Offset: 0

Views

Author

Keywords

Comments

Number of sets with two elements that can be obtained by selecting distinct elements from two sets with 2n and 3n elements respectively and n common elements. - Polina S. Dolmatova (polinasport(AT)mail.ru), Jul 11 2003

Crossrefs

Cf. index to sequence with numbers of the form n*(d*n+10-d)/2 in A140090.
Cf. similar sequences listed in A022288.

Programs

Formula

G.f.: x*(5 + 6*x)/(1-x)^3. - Bruno Berselli, Feb 11 2011
a(n) = 11*n + a(n-1) - 6 for n>0. - Vincenzo Librandi, Aug 04 2010
a(n) = A000217(6*n-1) - A000217(5*n-1). - Bruno Berselli, Oct 17 2016
From Wesley Ivan Hurt, Dec 04 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
a(n) = (1/9) * Sum_{i=n..10n-1} i. (End)
E.g.f.: (1/2)*(11*x^2 + 10*x)*exp(x). - G. C. Greubel, Jul 17 2017

A022272 a(n) = n*(15*n - 1)/2.

Original entry on oeis.org

0, 7, 29, 66, 118, 185, 267, 364, 476, 603, 745, 902, 1074, 1261, 1463, 1680, 1912, 2159, 2421, 2698, 2990, 3297, 3619, 3956, 4308, 4675, 5057, 5454, 5866, 6293, 6735, 7192, 7664, 8151, 8653, 9170, 9702, 10249, 10811, 11388, 11980, 12587, 13209, 13846, 14498
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. similar sequences listed in A022288.

Programs

Formula

a(n) = 15*n + a(n-1) - 8 for n>0, a(0)=0. - Vincenzo Librandi, Aug 04 2010
From Vincenzo Librandi, Mar 31 2015: (Start)
G.f.: x*(7 + 8*x)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2. (End)
From Bruno Berselli, Mar 31 2015: (Start)
a(n) = A022273(-n).
a(n) + a(-n) = A064761(n). (End)
a(n) = A000217(8*n-1) - A000217(7*n-1). - Bruno Berselli, Oct 17 2016
E.g.f.: (x/2)*(15*x + 14)*exp(x). - G. C. Greubel, Aug 23 2017

Extensions

More terms from Vincenzo Librandi, Mar 31 2015

A022284 a(n) = n*(27*n - 1)/2.

Original entry on oeis.org

0, 13, 53, 120, 214, 335, 483, 658, 860, 1089, 1345, 1628, 1938, 2275, 2639, 3030, 3448, 3893, 4365, 4864, 5390, 5943, 6523, 7130, 7764, 8425, 9113, 9828, 10570, 11339, 12135, 12958, 13808, 14685, 15589
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. similar sequences listed in A022288.

Programs

Formula

a(n) = a(n-1) + 27*n - 14 for n>0, a(0)=0. - Vincenzo Librandi, Aug 04 2010
G.f.: x*(13 + 14*x)/(1 - x)^3 . - R. J. Mathar, Aug 04 2016
a(n) = A000217(14*n-1) - A000217(13*n-1). - Bruno Berselli, Oct 14 2016
E.g.f.: (x/2)*(27*x + 26)*exp(x). - G. C. Greubel, Aug 23 2017

A022270 a(n) = n*(13*n - 1)/2.

Original entry on oeis.org

0, 6, 25, 57, 102, 160, 231, 315, 412, 522, 645, 781, 930, 1092, 1267, 1455, 1656, 1870, 2097, 2337, 2590, 2856, 3135, 3427, 3732, 4050, 4381, 4725, 5082, 5452, 5835, 6231, 6640, 7062, 7497, 7945, 8406, 8880, 9367, 9867, 10380, 10906, 11445
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. similar sequences listed in A022288.

Programs

  • Magma
    [n*(13*n - 1)/2: n in [0..45]]; // Vincenzo Librandi, Mar 31 2015
  • Mathematica
    Table[n (13 n - 1)/2, {n, 0, 40}] (* or *) LinearRecurrence[{3,-3,1},{0,6,25},40] (* Harvey P. Dale, Dec 02 2011 *)
    CoefficientList[Series[x (6 + 7 x) / (1 - x)^3, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 31 2015 *)
  • PARI
    A022270(n) = n*(13*n-1)/2 \\ Michael B. Porter, Mar 12 2010
    

Formula

a(n) = 13*n + a(n-1) - 7 for n>0, a(0)=0. - Vincenzo Librandi, Aug 04 2010
a(0)=0, a(1)=6, a(2)=25; for n>2, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Dec 02 2011
G.f.: x*(6 + 7*x)/(1 - x)^3. - Vincenzo Librandi, Mar 31 2015
a(n) = A022271(-n). - Bruno Berselli, Mar 31 2015
a(n) = A000217(7*n-1) - A000217(6*n-1). - Bruno Berselli, Oct 17 2016
E.g.f.: (x/2)*(13*x + 12)*exp(x). - G. C. Greubel, Aug 23 2017

Extensions

More terms from Vincenzo Librandi, Mar 31 2015

A022274 a(n) = n*(17*n - 1)/2.

Original entry on oeis.org

0, 8, 33, 75, 134, 210, 303, 413, 540, 684, 845, 1023, 1218, 1430, 1659, 1905, 2168, 2448, 2745, 3059, 3390, 3738, 4103, 4485, 4884, 5300, 5733, 6183, 6650, 7134, 7635, 8153, 8688, 9240, 9809, 10395, 10998, 11618, 12255, 12909, 13580, 14268, 14973
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. similar sequences listed in A022288.

Programs

Formula

a(n) = 17*n + a(n-1) - 9 for n>0, a(0)=0. - Vincenzo Librandi, Aug 04 2010
From Vincenzo Librandi, Mar 31 2015: (Start)
G.f.: x*(8 + 9*x)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2. (End)
a(n) = A022275(-n). - Bruno Berselli, Mar 31 2015
a(n) = A000217(9*n-1) - A000217(8*n-1). - Bruno Berselli, Oct 17 2016
E.g.f.: (x/2)*(17*x + 16)*exp(x). - G. C. Greubel, Aug 23 2017

Extensions

More terms from Vincenzo Librandi, Mar 31 2015

A022276 a(n) = n*(19*n - 1)/2.

Original entry on oeis.org

0, 9, 37, 84, 150, 235, 339, 462, 604, 765, 945, 1144, 1362, 1599, 1855, 2130, 2424, 2737, 3069, 3420, 3790, 4179, 4587, 5014, 5460, 5925, 6409, 6912, 7434, 7975, 8535, 9114, 9712, 10329, 10965, 11620, 12294, 12987, 13699, 14430, 15180, 15949, 16737, 17544, 18370
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. similar sequences listed in A022288.

Programs

Formula

a(n) = 19*n + a(n-1) - 10 for n>0, a(0)=0. - Vincenzo Librandi, Aug 04 2010
From Vincenzo Librandi, Mar 31 2015: (Start)
G.f.: x*(9 + 10*x)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2. (End)
a(n) = A022277(-n). - Bruno Berselli, Apr 01 2015
a(n) = A000217(10*n-1) - A000217(9*n-1). - Bruno Berselli, Oct 17 2016
E.g.f.: (x/2)*(19*x + 18)*exp(x). - G. C. Greubel, Aug 23 2017

Extensions

More terms from Vincenzo Librandi, Mar 31 2015
Showing 1-10 of 14 results. Next