cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A022288 a(n) = n*(31*n-1)/2.

Original entry on oeis.org

0, 15, 61, 138, 246, 385, 555, 756, 988, 1251, 1545, 1870, 2226, 2613, 3031, 3480, 3960, 4471, 5013, 5586, 6190, 6825, 7491, 8188, 8916, 9675, 10465, 11286, 12138, 13021, 13935, 14880, 15856, 16863, 17901
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. similar sequences of the form n*((2*k+1)*n - 1)/2: A161680 (k=0), A000326 (k=1), A005476 (k=2), A022264 (k=3), A022266 (k=4), A022268 (k=5), A022270 (k=6), A022272 (k=7), A022274 (k=8), A022276 (k=9), A022278 (k=10), A022280 (k=11), A022282 (k=12), A022284 (k=13), A022286 (k=14), this sequence (k=15).

Programs

  • Mathematica
    Table[n (31 n - 1)/2, {n, 0, 40}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 15, 61}, 40] (* Harvey P. Dale, Mar 31 2014 *)
  • PARI
    a(n)=n*(31*n-1)/2 \\ Charles R Greathouse IV, Jun 17 2017

Formula

a(n) = 31*n + a(n-1) - 16 for n>0, a(0)=0. - Vincenzo Librandi, Aug 04 2010
a(0)=0, a(1)=15, a(2)=61; for n>2, a(n) = 3*a(n-1)-3*a(n-2)+a(n-3). - Harvey P. Dale, Mar 31 2014
G.f.: x*(15 + 16*x)/(1 - x)^3. - R. J. Mathar, Sep 02 2016
a(n) = A000217(16*n-1) - A000217(15*n-1). In general, n*((2*k+1)*n - 1)/2 = A000217((k+1)*n-1) - A000217(k*n-1), and the ordinary generating function is x*(k + (k+1)*x)/(1 - x)^3. - Bruno Berselli, Oct 14 2016
E.g.f.: (x/2)*(31*x + 30)*exp(x). - G. C. Greubel, Aug 24 2017

A268351 a(n) = 3*n*(9*n - 1)/2.

Original entry on oeis.org

0, 12, 51, 117, 210, 330, 477, 651, 852, 1080, 1335, 1617, 1926, 2262, 2625, 3015, 3432, 3876, 4347, 4845, 5370, 5922, 6501, 7107, 7740, 8400, 9087, 9801, 10542, 11310, 12105, 12927, 13776, 14652, 15555, 16485, 17442, 18426, 19437, 20475, 21540, 22632, 23751, 24897, 26070, 27270
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 02 2016

Keywords

Comments

First trisection of pentagonal numbers (A000326).
More generally, the ordinary generating function for the first trisection of k-gonal numbers is 3*x*(k - 1 + (2*k - 5)*x)/(1 - x)^3.

Crossrefs

Programs

  • Magma
    [3*n*(9*n-1)/2: n in [0..50]]; // Vincenzo Librandi, Feb 04 2016
    
  • Mathematica
    Table[3 n (9 n - 1)/2, {n, 0, 45}]
    Table[Binomial[9 n, 2]/3, {n, 0, 45}]
    LinearRecurrence[{3, -3, 1}, {0, 12, 51}, 45]
  • PARI
    a(n)=3*n*(9*n-1)/2 \\ Charles R Greathouse IV, Jul 26 2016

Formula

G.f.: 3*x*(4 + 5*x)/(1 - x)^3.
a(n) = binomial(9*n,2)/3.
a(n) = A000326(3*n) = 3*A022266(n).
a(n) = A211538(6*n+2).
a(n) = A001318(6*n-1), with A001318(-1)=0.
a(n) = A188623(9*n-2), with A188623(-2)=0.
Sum_{n>=1} 1/a(n) = 0.132848490245209886617568... = (-Pi*cot(Pi/9) + 5*log(3) + 4*cos(Pi/9)*log(cos(Pi/18)) - 4*cos(2*Pi/9)*log(sin(Pi/9)) - 4*log(sin(2*Pi/9))*sin(Pi/18))/3. [Corrected by Vaclav Kotesovec, Feb 25 2016]
From Elmo R. Oliveira, Dec 27 2024: (Start)
E.g.f.: 3*exp(x)*x*(8 + 9*x)/2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
a(n) = A022284(n) - n. (End)

Extensions

Edited by Bruno Berselli, Feb 03 2016

A360962 Square array T(n,k) = k*((3+6*n)*k - 1)/2; n>=0, k>=0, read by antidiagonals upwards.

Original entry on oeis.org

0, 0, 1, 0, 4, 5, 0, 7, 17, 12, 0, 10, 29, 39, 22, 0, 13, 41, 66, 70, 35, 0, 16, 53, 93, 118, 110, 51, 0, 19, 65, 120, 166, 185, 159, 70, 0, 22, 77, 147, 214, 260, 267, 217, 92, 0, 25, 89, 174, 262, 335, 375, 364, 284, 117, 0, 28, 101, 201, 310, 410, 483, 511, 476, 360, 145
Offset: 0

Views

Author

Paul Curtz, Feb 27 2023

Keywords

Comments

The main diagonal is A024394.
The antidiagonals sums are A000537.

Examples

			The rows are:
  0  1  5  12  22  35  51  70 ... = A000326
  0  4 17  39  70 110 159 217 ... = A022266
  0  7 29  66 118 185 267 364 ... = A022272
  0 10 41  93 166 260 375 511 ... = A022278
  0 13 53 120 214 335 483 658 ... = A022284
  ... .
Columns: A000004, A016777, A017581, A154266=3*A017209, 2*A348845, 5*A161447, 3*A158057(n+1), ... (coefficients from A026741).
Difference between two consecutive rows are: A033428.
This square array read by antidiagonals leads to the triangle
  0
  0  1
  0  4  5
  0  7 17 12
  0 10 29 39  22
  0 13 41 66  70  35
  0 16 53 93 118 110 51
  ... .
		

Crossrefs

Programs

  • Maple
    T:= (n,k)-> k*(k*(3+6*n)-1)/2:
    seq(seq(T(d-k,k), k=0..d), d=0..10);  # Alois P. Heinz, Feb 28 2023
  • Mathematica
    T[n_, k_] := ((6*n + 3)*k - 1)*k/2; Table[T[n - k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Feb 27 2023 *)
  • PARI
    T(n,k) = k*((3+6*n)*k-1)/2; \\ Michel Marcus, Feb 27 2023

Formula

Take successively sequences n*(3*n-1)/2, n*(9*n-1)/2, n*(15*n-1)/2, n*(21*n-1)/2, ... listed in the EXAMPLE section.
From Stefano Spezia, Feb 21 2024: (Start)
G.f.: y*(1 + 2*y + x*(2 + y))/((1 - x)^2*(1 - y)^3).
E.g.f.: exp(x+y)*y*(2 + 3*y + 6*x*(1 + y))/2. (End)
Showing 1-3 of 3 results.