cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A272104 Sum of the even numbers among the larger parts of the partitions of n into two parts.

Original entry on oeis.org

0, 0, 0, 2, 2, 4, 4, 10, 10, 14, 14, 24, 24, 30, 30, 44, 44, 52, 52, 70, 70, 80, 80, 102, 102, 114, 114, 140, 140, 154, 154, 184, 184, 200, 200, 234, 234, 252, 252, 290, 290, 310, 310, 352, 352, 374, 374, 420, 420, 444, 444, 494, 494, 520, 520, 574, 574, 602
Offset: 0

Views

Author

Wesley Ivan Hurt, Apr 20 2016

Keywords

Comments

Essentially, repeated values of A152749.
Sum of the lengths of the distinct rectangles with even length and integer width such that L + W = n, W <= L. For example, a(10) = 14; the rectangles are 2 X 8 and 4 X 6, so 8 + 6 = 14. - Wesley Ivan Hurt, Nov 04 2017

Examples

			a(5) = 4; the partitions of 5 into 2 parts are (4,1),(3,2) and the sum of the larger even parts is 4.
a(6) = 4; the partitions of 6 into 2 parts are (5,1),(4,2),(3,3) and the sum of the larger even parts is also 4.
		

Crossrefs

Programs

  • Magma
    [(1+3*(2*n-3-(-1)^n)/2+3*(2*n-3-(-1)^n)^2/8+(2*n-1-(-1)^n)*(-1)^((2*n+1-(-1)^n) div 4)/2)/8 : n in [0..50]];
    
  • Maple
    A272104:=n->(1+3*(2*n-3-(-1)^n)/2+3*(2*n-3-(-1)^n)^2/8+(2*n-1-(-1)^n)*(-1)^((2*n+1-(-1)^n)/4)/2)/8: seq(A272104(n), n=0..100);
  • Mathematica
    Table[(1 + 3(2n-3-(-1)^n)/2 + 3(2n-3-(-1)^n)^2/8 + (2n-1-(-1)^n) * (-1)^((2n+1-(-1)^n)/4)/2) / 8, {n, 0, 50}]
    Table[Total@ Map[First, IntegerPartitions[n, {2}] /. {k_, } /; OddQ@ k -> Nothing], {n, 0, 57}] (* _Michael De Vlieger, Apr 20 2016, Version 10.2 *)
  • PARI
    concat(vector(3), Vec(2*x^3*(1-x+x^2)*(1+x+x^2)/((1-x)^3*(1+x)^2*(1+x^2)^2) + O(x^50))) \\ Colin Barker, Apr 20 2016

Formula

a(n) = (1 + 3*(2n-3-(-1)^n)/2 + 3*(2n-3-(-1)^n)^2/8 + (2n-1-(-1)^n) * (-1)^((2n+1-(-1)^n)/4)/2) / 8.
a(n) = Sum_{i=ceiling(n/2)..n-1} i * (i+1 mod 2).
a(n) = Sum_{i=1..floor(n/2)} (n-i) * (n-i+1 mod 2).
a(2n+1) = a(2n+2) = A152749(n) = 2*A001318(n).
G.f.: 2*x^3*(1-x+x^2)*(1+x+x^2) / ((1-x)^3*(1+x)^2*(1+x^2)^2). - Colin Barker, Apr 20 2016
From Wesley Ivan Hurt, Apr 22 2016, Apr 23 2016: (Start)
a(2n+2)-a(2n) = A109043(n) = 2*A026741(n).
a(4n) = A049450(n) = 2*A000326(n),
a(8n) = A126964(n) = 2*A049452(n),
a(12n) = 2*A268351(n).
a(n+1) = A001318(n) - A272212(n+1). (End)
E.g.f.: ((2 + 3*x*(1 + x))*cosh(x) - 2*(cos(x) + x*cos(x) + x*sin(x)) + (-1 + 3*(-1 + x)*x)*sinh(x))/16. - Ilya Gutkovskiy, Apr 29 2016

A298397 Pentagonal numbers divisible by 4.

Original entry on oeis.org

0, 12, 92, 176, 376, 532, 852, 1080, 1520, 1820, 2380, 2752, 3432, 3876, 4676, 5192, 6112, 6700, 7740, 8400, 9560, 10292, 11572, 12376, 13776, 14652, 16172, 17120, 18760, 19780, 21540, 22632, 24512, 25676, 27676, 28912, 31032, 32340, 34580, 35960, 38320, 39772, 42252
Offset: 1

Views

Author

Bruno Berselli, Jan 18 2018

Keywords

Comments

If b(n) is the n-th octagonal number multiple of 32 then a(n) = b(n)/8.

Examples

			A000326(8) = 92 is in the sequence because 92 = 4*23.
		

Crossrefs

Subsequence of A047217, A047388.
Cf. pentagonal numbers divisible by k: A014633 (k=2), A268351 (k=3), this sequence (k=4), A117793 (k=5).

Programs

  • GAP
    List([1..50], n -> 8*n*(3*n-7)-(6*n-7)*(-1)^n+33);
    
  • Magma
    [8*n*(3*n-7)-(6*n-7)*(-1)^n+33: n in [1..50]];
    
  • Maple
    P:=proc(n) local x; x:=n*(3*n-1)/2; if x mod 4=0 then x; fi; end:
    seq(P(i),i=0..2*10^2); # Paolo P. Lava, Jan 19 2018
  • Mathematica
    Table[8 n (3 n - 7) - (6 n - 7) (-1)^n + 33, {n, 1, 50}]
    (* Second program (using definition): *)
    Select[Table[k*(3*k - 1)/2, {k, 0, 200}], Divisible[#, 4]&] (* Jean-François Alcover, Jan 19 2018 *)
  • Maxima
    makelist(8*n*(3*n-7)-(6*n-7)*(-1)^n+33, n, 1, 50);
    
  • PARI
    vector(50, n, nn; 8*n*(3*n-7)-(6*n-7)*(-1)^n+33)
    
  • PARI
    concat(0, Vec(4*x^2*(3 + 20*x + 15*x^2 + 10*x^3) / ((1 - x)^3*(1 + x)^2) + O(x^40))) \\ Colin Barker, Jan 20 2018
  • Sage
    [8*n*(3*n-7)-(6*n-7)*(-1)^n+33 for n in (1..50)]
    

Formula

O.g.f.: 4*x^2*(3 + 20*x + 15*x^2 + 10*x^3)/((1 + x)^2*(1 - x)^3).
E.g.f.: (33 - 32*x + 24*x^2)*exp(x) + (7 + 6*x)*exp(-x) - 40.
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
a(n) = 8*n*(3*n - 7) - (6*n - 7)*(-1)^n + 33.
From Colin Barker, Jan 20 2018: (Start)
a(n) = 24*n^2 - 62*n + 40 for n even.
a(n) = 24*n^2 - 50*n + 26 for n odd. (End)
Showing 1-2 of 2 results.