A175136
Triangle T(n,k) read by rows: number of LCO forests of size n with k leaves, 1 <= k <= n.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 4, 6, 3, 1, 8, 17, 12, 4, 1, 16, 46, 44, 20, 5, 1, 32, 120, 150, 90, 30, 6, 1, 64, 304, 482, 370, 160, 42, 7, 1, 128, 752, 1476, 1412, 770, 259, 56, 8, 1, 256, 1824, 4344, 5068, 3402, 1428, 392, 72, 9, 1, 512, 4352, 12368, 17285, 14000, 7168, 2436
Offset: 1
Triangle starts
1;
1, 1;
2, 2, 1;
4, 6, 3, 1;
8, 17, 12, 4, 1;
16, 46, 44, 20, 5, 1;
32, 120, 150, 90, 30, 6, 1;
64, 304, 482, 370, 160, 42, 7, 1;
128, 752, 1476, 1412, 770, 259, 56, 8, 1;
Triangle (0,1,1,0,1,1,0,...) DELTA (1,0,0,1,0,0,1,...) begins:
1;
0, 1;
0, 1, 1;
0, 2, 2, 1;
0, 4, 6, 3, 1;
0, 8, 17, 12, 4, 1; ... - _Philippe Deléham_, Oct 29 2011
- David Callan, A bijection on Dyck paths and its cycle structure, El. J. Combinat. 14 (2007) # R28.
- David Callan, On Ascent, Repetition and Descent Sequences, arXiv:1911.02209 [math.CO], 2019.
- David Callan and Emeric Deutsch, The Run Transform, arXiv:1112.3639 [math.CO], 2011.
- K. Manes, A. Sapounakis, I. Tasoulas, and P. Tsikouras, Nonleft peaks in Dyck paths: a combinatorial approach, Discrete Math., 337 (2014), 97-105.
-
lco := proc(siz,leav) (1-(1-4*x*(1-x)/(1-x*y))^(1/2))/2/x ; coeftayl(%,x=0,siz ) ; coeftayl(%,y=0,leav ) ; end proc: seq(seq(lco(n,k),k=1..n),n=1..9) ;
T := proc(n, k): add(A091894(n-k, k1)*binomial(n-k1-1, n-k), k1=0..floor((n-k)/2)) end: A091894 := proc(n, k): if n=0 and k=0 then 1 elif n=0 then 0 else 2^(n-2*k-1)* binomial(n-1, 2*k) * binomial(2*k, k)/(k+1) fi end: seq(seq(T(n, k), k=1..n), n=1..10); # Johannes W. Meijer, May 06 2011, revised Nov 23 2012
-
A091894[n_, k_] := 2^(n - 2*k - 1)*Binomial[n - 1, 2*k]*(Binomial[2*k, k]/(k + 1)); t[n_, k_] := Sum[A091894[n - k, k1]*Binomial [n - k1 - 1, n - k], {k1, 0, (n - k)/2}]; t[n_, n_] = 1; Table[t[n, k], {n, 1, 11}, {k, 1, n}] // Flatten(* Jean-François Alcover, Jun 13 2013, after Johannes W. Meijer *)
A254407
a(n) = n*(n+1)*(11*n +10)/6.
Original entry on oeis.org
0, 7, 32, 86, 180, 325, 532, 812, 1176, 1635, 2200, 2882, 3692, 4641, 5740, 7000, 8432, 10047, 11856, 13870, 16100, 18557, 21252, 24196, 27400, 30875, 34632, 38682, 43036, 47705, 52700, 58032, 63712, 69751, 76160, 82950, 90132, 97717, 105716, 114140, 123000
Offset: 0
532 is the 7th term because A000566(7)=112 and Sum_{i=1..7} A000384(i)=252, therefore 7*112-252 = 532.
-
[n*(n+1)*(11*n+10)/6: n in [0..40]];
-
A254407:= n-> n*(n+1)*(11*n+10)/6; seq(A254407(n), n=0..50); # G. C. Greubel, Mar 31 2021
-
Table[n (n + 1) (11 n + 10)/6, {n, 0, 40}]
Column[CoefficientList[Series[x (7 + 4 x) / (1 - x)^4, {x, 0, 60}], x]] (* Vincenzo Librandi, Jan 31 2015 *)
-
makelist(n*(n+1)*(11*n+10)/6, n, 0, 40);
-
vector(40, n, n--; n*(n+1)*(11*n+10)/6)
-
[n*(n+1)*(11*n+10)/6 for n in (0..40)]
A177254
Triangle read by rows: T(n,k) is the number of partitions of the set {1,2,...,n} having k adjacent blocks (0 <= k <= n). An adjacent block is a block of the form (i, i+1, i+2, ...).
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 1, 4, 6, 3, 1, 5, 13, 17, 12, 4, 1, 21, 51, 61, 44, 20, 5, 1, 91, 219, 255, 185, 90, 30, 6, 1, 422, 1019, 1182, 867, 440, 160, 42, 7, 1, 2103, 5108, 5964, 4430, 2322, 896, 259, 56, 8, 1, 11226, 27448, 32373, 24406, 13118, 5292, 1638, 392, 72, 9, 1
Offset: 0
T(4,2)=6 because we have 1-234, 12-34, 123-4, 13-2-4, 14-2-3, and 1-24-3.
Triangle starts:
1;
0, 1;
0, 1, 1;
0, 2, 2, 1;
1, 4, 6, 3, 1;
5, 13, 17, 12, 4, 1;
21, 51, 61, 44, 20, 5, 1;
91, 219, 255, 185, 90, 30, 6, 1;
422, 1019, 1182, 867, 440, 160, 42, 7, 1;
2103, 5108, 5964, 4430, 2322, 896, 259, 56, 8, 1;
-
Q[0] := 1: for n to 10 do Q[n] := expand(u*subs(w = v, diff(Q[n-1], u))+u*subs(w = v, diff(Q[n-1], v))+w*(diff(Q[n-1], w))+w*subs(w = v, Q[n-1])) end do: for n from 0 to 10 do P[n] := sort(expand(subs({v = t, w = t, u = 1}, Q[n]))) end do; for n from 0 to 10 do seq(coeff(P[n], t, j), j = 0 .. n) end do; # yields sequence in triangular form
A190048
Expansion of (8+6*x)/(1-x)^5.
Original entry on oeis.org
8, 46, 150, 370, 770, 1428, 2436, 3900, 5940, 8690, 12298, 16926, 22750, 29960, 38760, 49368, 62016, 76950, 94430, 114730, 138138, 164956, 195500, 230100, 269100, 312858, 361746, 416150, 476470, 543120, 616528, 697136, 785400, 881790, 986790, 1100898
Offset: 0
-
[(7*n^4+58*n^3+173*n^2+218*n+96)/12: n in [0..50]]; // Vincenzo Librandi, May 07 2011
-
A190048 := proc(n) option remember; a(n):=(7*n^4+58*n^3+173*n^2+218*n+96)/12 end: seq(A190048(n),n=0..35);
-
LinearRecurrence[{5,-10,10,-5,1}, {8,46,150,370,770}, 30] (* or *) CoefficientList[Series[(8+6*x)/(1-x)^5, {x, 0, 50}], x] (* G. C. Greubel, Jan 10 2018 *)
-
x='x+O('x^30); Vec((8+6*x)/(1-x)^5) \\ G. C. Greubel, Jan 10 2018
-
for(n=0,50, print1((7*n^4 +58*n^3 +173*n^2 +218*n +96)/12, ", ")) \\ G. C. Greubel, Jan 10 2018
A190049
Expansion of (16+24*x+2*x^2)/(x-1)^6.
Original entry on oeis.org
16, 120, 482, 1412, 3402, 7168, 13692, 24264, 40524, 64504, 98670, 145964, 209846, 294336, 404056, 544272, 720936, 940728, 1211098, 1540308, 1937474, 2412608, 2976660, 3641560, 4420260, 5326776, 6376230, 7584892
Offset: 0
-
[(21*n^5+245*n^4+1105*n^3+2395*n^2+2474*n+960)/60: n in [0..50]]; // Vincenzo Librandi, May 07 2011
-
A190049 := proc(n) option remember; a(n):=(21*n^5 +245*n^4 +1105*n^3 +2395*n^2 +2474*n +960)/60 end: seq(A190049(n),n=0..27);
-
LinearRecurrence[{6,-15,20,-15,6,-1}, {16,120,482,1412,3402,7168}, 30] (* or *) CoefficientList[Series[(16 +24*x +2*x^2)/(1-x)^6, {x, 0, 50}], x] (* G. C. Greubel, Jan 10 2018 *)
-
x='x+O('x^30); Vec((16 +24*x +2*x^2)/(1-x)^6) \\ G. C. Greubel, Jan 10 2018
-
for(n=0,30, print1((21*n^5 +245*n^4 +1105*n^3 +2395*n^2 +2474*n +960)/60, ", ")) \\ G. C. Greubel, Jan 10 2018
A126264
a(n) = 5*n^2 + 3*n.
Original entry on oeis.org
8, 26, 54, 92, 140, 198, 266, 344, 432, 530, 638, 756, 884, 1022, 1170, 1328, 1496, 1674, 1862, 2060, 2268, 2486, 2714, 2952, 3200, 3458, 3726, 4004, 4292, 4590, 4898, 5216, 5544, 5882, 6230, 6588, 6956, 7334, 7722, 8120, 8528, 8946, 9374, 9812, 10260
Offset: 1
a(24) = 5*24^2 + 3*24 = 2880 + 72 = 2952.
- L. B. W. Jolley, Summation of Series, Dover Publications, 1961, p. 12
Showing 1-6 of 6 results.
Comments