cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A175136 Triangle T(n,k) read by rows: number of LCO forests of size n with k leaves, 1 <= k <= n.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 4, 6, 3, 1, 8, 17, 12, 4, 1, 16, 46, 44, 20, 5, 1, 32, 120, 150, 90, 30, 6, 1, 64, 304, 482, 370, 160, 42, 7, 1, 128, 752, 1476, 1412, 770, 259, 56, 8, 1, 256, 1824, 4344, 5068, 3402, 1428, 392, 72, 9, 1, 512, 4352, 12368, 17285, 14000, 7168, 2436
Offset: 1

Views

Author

R. J. Mathar, Feb 21 2010

Keywords

Comments

From Johannes W. Meijer, May 06 2011: (Start)
The Row1, Kn11, Kn12, Kn13, Kn21, Kn22, Kn23, Kn3, Kn4 and Ca1 triangle sums link A175136 with several sequences, see the crossrefs. For the definitions of these triangle sums see A180662.
It is remarkable that the coefficients of the right hand columns of A175136, and subsequently those of triangle A175136, can be generated with the aid of the row coefficients of A091894. For the fourth, fifth and sixth right hand columns see A162148, A190048 and A190049. The a(n) formulas of the right hand columns lead to an explicit formula for the T(n,k), see the formulas and the second Maple program. (End)
Triangle T(n,k), 1 <= k <= n, read by rows, given by (0,1,1,0,1,1,0,1,1,0,1,1,0,1,...) DELTA (1,0,0,1,0,0,1,0,0,1,0,0,1,0,...) where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 29 2011.
T(n,k) is the number of noncrossing partitions of n containing k runs, where a block forms a run if it consists of an interval of integers. For example, T(4,2)=6 counts 1/234, 12/34, 123/4, 1/24/3, 13/2/4, 14/2/3. - David Callan, Oct 14 2012

Examples

			Triangle starts
    1;
    1,    1;
    2,    2,    1;
    4,    6,    3,    1;
    8,   17,   12,    4,    1;
   16,   46,   44,   20,    5,    1;
   32,  120,  150,   90,   30,    6,    1;
   64,  304,  482,  370,  160,   42,    7,    1;
  128,  752, 1476, 1412,  770,  259,   56,    8,    1;
Triangle (0,1,1,0,1,1,0,...) DELTA (1,0,0,1,0,0,1,...) begins:
  1;
  0,  1;
  0,  1,  1;
  0,  2,  2,  1;
  0,  4,  6,  3,  1;
  0,  8, 17, 12,  4,  1; ... - _Philippe Deléham_, Oct 29 2011
		

Crossrefs

Triangle sums (see the comments): A000108 (Row1), A005043 (Related to Kn11, Kn12, Kn13 and Kn4), A007477 (Related to Kn21, Kn22, Kn23 and Kn3), A099251 (Kn4), A166300 (Ca1). - Johannes W. Meijer, May 06 2011
Cf. A000108 (row sums), A196182

Programs

  • Maple
    lco := proc(siz,leav) (1-(1-4*x*(1-x)/(1-x*y))^(1/2))/2/x ; coeftayl(%,x=0,siz ) ; coeftayl(%,y=0,leav ) ; end proc: seq(seq(lco(n,k),k=1..n),n=1..9) ;
    T := proc(n, k): add(A091894(n-k, k1)*binomial(n-k1-1, n-k), k1=0..floor((n-k)/2)) end: A091894 := proc(n, k): if n=0 and k=0 then 1 elif n=0 then 0 else 2^(n-2*k-1)* binomial(n-1, 2*k) * binomial(2*k, k)/(k+1) fi end: seq(seq(T(n, k), k=1..n), n=1..10); # Johannes W. Meijer, May 06 2011, revised Nov 23 2012
  • Mathematica
    A091894[n_, k_] := 2^(n - 2*k - 1)*Binomial[n - 1, 2*k]*(Binomial[2*k, k]/(k + 1)); t[n_, k_] := Sum[A091894[n - k, k1]*Binomial [n - k1 - 1, n - k], {k1, 0, (n - k)/2}]; t[n_, n_] = 1; Table[t[n, k], {n, 1, 11}, {k, 1, n}] // Flatten(* Jean-François Alcover, Jun 13 2013, after Johannes W. Meijer *)

Formula

G.f.: (1-(1-4*x*(1-x)/(1-x*y))^(1/2))/(2*x).
T(n,k) = Sum_{k1=0..floor((n-k)/2)} A091894(n-k, k1)*binomial(n-k1-1, n-k), 1 <= k <= n. - Johannes W. Meijer, May 06 2011

Extensions

Variable names changed by Johannes W. Meijer, May 06 2011

A254407 a(n) = n*(n+1)*(11*n +10)/6.

Original entry on oeis.org

0, 7, 32, 86, 180, 325, 532, 812, 1176, 1635, 2200, 2882, 3692, 4641, 5740, 7000, 8432, 10047, 11856, 13870, 16100, 18557, 21252, 24196, 27400, 30875, 34632, 38682, 43036, 47705, 52700, 58032, 63712, 69751, 76160, 82950, 90132, 97717, 105716, 114140, 123000
Offset: 0

Views

Author

Bruno Berselli, Jan 30 2015

Keywords

Comments

Similar sequences of the type m*P(s,m) - Sum_{i=1..m} P(s-1,i), where P(s,m) is the m-th s-gonal number:
s=3: A027480(n) = (n+1)*A000217(n+1) - Sum_{i=1..n+1} i;
s=4: A162148(n) = (n+1)*A000290(n+1) - Sum_{i=1..n+1} A000217(i);
s=5: A245301(n) = (n+1)*A000326(n+1) - Sum_{i=1..n+1} A000290(i);
s=6: A085788(n) = (n+1)*A000384(n+1) - Sum_{i=1..n+1} A000326(i);
s=7: a(n) = (n+1)*A000566(n+1) - Sum_{i=1..n+1} A000384(i).

Examples

			532 is the 7th term because A000566(7)=112 and Sum_{i=1..7} A000384(i)=252, therefore 7*112-252 = 532.
		

Crossrefs

Programs

  • Magma
    [n*(n+1)*(11*n+10)/6: n in [0..40]];
    
  • Maple
    A254407:= n-> n*(n+1)*(11*n+10)/6; seq(A254407(n), n=0..50); # G. C. Greubel, Mar 31 2021
  • Mathematica
    Table[n (n + 1) (11 n + 10)/6, {n, 0, 40}]
    Column[CoefficientList[Series[x (7 + 4 x) / (1 - x)^4, {x, 0, 60}], x]] (* Vincenzo Librandi, Jan 31 2015 *)
  • Maxima
    makelist(n*(n+1)*(11*n+10)/6, n, 0, 40);
  • PARI
    vector(40, n, n--; n*(n+1)*(11*n+10)/6)
    
  • Sage
    [n*(n+1)*(11*n+10)/6 for n in (0..40)]
    

Formula

G.f.: x*(7 + 4*x)/(1 - x)^4.
a(-n) = -A132112(n-1).
a(n) = Sum_{k=0..n} A011875(11*k+2).
Equivalently, partial sums of A254963.
E.g.f.: x*(42 + 54*x + 11*x^2)*exp(x)/6. - G. C. Greubel, Mar 31 2021

A177254 Triangle read by rows: T(n,k) is the number of partitions of the set {1,2,...,n} having k adjacent blocks (0 <= k <= n). An adjacent block is a block of the form (i, i+1, i+2, ...).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 1, 4, 6, 3, 1, 5, 13, 17, 12, 4, 1, 21, 51, 61, 44, 20, 5, 1, 91, 219, 255, 185, 90, 30, 6, 1, 422, 1019, 1182, 867, 440, 160, 42, 7, 1, 2103, 5108, 5964, 4430, 2322, 896, 259, 56, 8, 1, 11226, 27448, 32373, 24406, 13118, 5292, 1638, 392, 72, 9, 1
Offset: 0

Views

Author

Emeric Deutsch, May 07 2010

Keywords

Comments

Sum of entries in row n = A000110(n) (the Bell numbers).

Examples

			T(4,2)=6 because we have 1-234, 12-34, 123-4, 13-2-4, 14-2-3, and 1-24-3.
Triangle starts:
     1;
     0,    1;
     0,    1,    1;
     0,    2,    2,    1;
     1,    4,    6,    3,    1;
     5,   13,   17,   12,    4,   1;
    21,   51,   61,   44,   20,   5,   1;
    91,  219,  255,  185,   90,  30,   6,  1;
   422, 1019, 1182,  867,  440, 160,  42,  7,  1;
  2103, 5108, 5964, 4430, 2322, 896, 259, 56,  8,  1;
		

Crossrefs

Programs

  • Maple
    Q[0] := 1: for n to 10 do Q[n] := expand(u*subs(w = v, diff(Q[n-1], u))+u*subs(w = v, diff(Q[n-1], v))+w*(diff(Q[n-1], w))+w*subs(w = v, Q[n-1])) end do: for n from 0 to 10 do P[n] := sort(expand(subs({v = t, w = t, u = 1}, Q[n]))) end do; for n from 0 to 10 do seq(coeff(P[n], t, j), j = 0 .. n) end do; # yields sequence in triangular form

Formula

The row generating polynomial P[n](t) is given by P[n](t)=Q[n](1,t,t), where Q[n](u,v,w) is obtained recursively from Q[n](u,v,w) =u(dQ[n-1]/du){w=v} + u(dQ[n-1]/dv){w=v} + w(dQ[n-1]/dw) + w(Q[n-1])_{w=v}, Q[0]=1. Here Q[n](u,v,w) is the trivariate generating polynomial of the partitions of {1,2,...,n}, where u marks blocks that are not adjacent, v marks adjacent blocks not ending with n, and w marks adjacent blocks ending with n.
T(n, 0) = A168444(n).
Sum_{k=0..n} T(n, k) = A000110(n) (row sums).
Sum_{k=0..n} k*T(n, k) = A177255(n).
From G. C. Greubel, May 12 2024: (Start)
T(n, n) = 1.
T(n, n-1) = n-1, for n >= 1.
T(n, n-2) = A002378(n-2), for n >= 2.
T(n, n-3) = A162148(n-3), for n >= 3.
T(n, n-4) = A302560(n-3), for n >= 4. (End)

A190048 Expansion of (8+6*x)/(1-x)^5.

Original entry on oeis.org

8, 46, 150, 370, 770, 1428, 2436, 3900, 5940, 8690, 12298, 16926, 22750, 29960, 38760, 49368, 62016, 76950, 94430, 114730, 138138, 164956, 195500, 230100, 269100, 312858, 361746, 416150, 476470, 543120, 616528, 697136, 785400, 881790, 986790, 1100898
Offset: 0

Views

Author

Johannes W. Meijer, May 06 2011

Keywords

Comments

Equals the fifth right hand column of A175136.

Crossrefs

Related to A000332 and A091894.

Programs

  • Magma
    [(7*n^4+58*n^3+173*n^2+218*n+96)/12: n in [0..50]]; // Vincenzo Librandi, May 07 2011
    
  • Maple
    A190048 := proc(n) option remember; a(n):=(7*n^4+58*n^3+173*n^2+218*n+96)/12 end: seq(A190048(n),n=0..35);
  • Mathematica
    LinearRecurrence[{5,-10,10,-5,1}, {8,46,150,370,770}, 30] (* or *) CoefficientList[Series[(8+6*x)/(1-x)^5, {x, 0, 50}], x] (* G. C. Greubel, Jan 10 2018 *)
  • PARI
    x='x+O('x^30); Vec((8+6*x)/(1-x)^5) \\ G. C. Greubel, Jan 10 2018
    
  • PARI
    for(n=0,50, print1((7*n^4 +58*n^3 +173*n^2 +218*n +96)/12, ", ")) \\ G. C. Greubel, Jan 10 2018

Formula

G.f.: (8+6*x)/(1-x)^5.
a(n) = 8*binomial(n+4,4) + 6*binomial(n+3,4).
a(n) = A091894(4,0)*binomial(n+4,4) + A091894(4,1)*binomial(n+3,4).
a(n) = (7*n^4 +58*n^3 +173*n^2 +218*n +96)/12.

A190049 Expansion of (16+24*x+2*x^2)/(x-1)^6.

Original entry on oeis.org

16, 120, 482, 1412, 3402, 7168, 13692, 24264, 40524, 64504, 98670, 145964, 209846, 294336, 404056, 544272, 720936, 940728, 1211098, 1540308, 1937474, 2412608, 2976660, 3641560, 4420260, 5326776, 6376230, 7584892
Offset: 0

Views

Author

Johannes W. Meijer, May 06 2011

Keywords

Comments

Equals the sixth right hand column of A175136.

Crossrefs

Related to A000389 and A091894.

Programs

  • Magma
    [(21*n^5+245*n^4+1105*n^3+2395*n^2+2474*n+960)/60: n in [0..50]]; // Vincenzo Librandi, May 07 2011
    
  • Maple
    A190049 := proc(n) option remember; a(n):=(21*n^5 +245*n^4 +1105*n^3 +2395*n^2 +2474*n +960)/60 end: seq(A190049(n),n=0..27);
  • Mathematica
    LinearRecurrence[{6,-15,20,-15,6,-1}, {16,120,482,1412,3402,7168}, 30] (* or *) CoefficientList[Series[(16 +24*x +2*x^2)/(1-x)^6, {x, 0, 50}], x] (* G. C. Greubel, Jan 10 2018 *)
  • PARI
    x='x+O('x^30); Vec((16 +24*x +2*x^2)/(1-x)^6) \\ G. C. Greubel, Jan 10 2018
    
  • PARI
    for(n=0,30, print1((21*n^5 +245*n^4 +1105*n^3 +2395*n^2 +2474*n +960)/60, ", ")) \\ G. C. Greubel, Jan 10 2018

Formula

G.f.: (16 +24*x +2*x^2)/(1-x)^6.
a(n) = 16*binomial(n+5,5) +24*binomial(n+4,5) +2*binomial(n+3,5).
a(n) = A091894(5,0)*binomial(n+5,5) + A091894(5,1)*binomial(n+4,5) + A091894(5,2)*binomial(n+3,5).
a(n) = (21*n^5 +245*n^4 +1105*n^3 +2395*n^2 +2474*n +960)/60.

A126264 a(n) = 5*n^2 + 3*n.

Original entry on oeis.org

8, 26, 54, 92, 140, 198, 266, 344, 432, 530, 638, 756, 884, 1022, 1170, 1328, 1496, 1674, 1862, 2060, 2268, 2486, 2714, 2952, 3200, 3458, 3726, 4004, 4292, 4590, 4898, 5216, 5544, 5882, 6230, 6588, 6956, 7334, 7722, 8120, 8528, 8946, 9374, 9812, 10260
Offset: 1

Views

Author

Gary W. Adamson, Dec 22 2006

Keywords

Examples

			a(24) = 5*24^2 + 3*24 = 2880 + 72 = 2952.
		

References

  • L. B. W. Jolley, Summation of Series, Dover Publications, 1961, p. 12

Crossrefs

Programs

Formula

Sum_{i=1..n} a(i) = n*(n+1)*(5n+7)/3 = 2*A162148(n).
a(n) = 2*A147875(n+1).
From G. C. Greubel, Aug 23 2017: (Start)
G.f.: 2*x*(x + 4)/(1 - x)^3.
E.g.f.: x*(5*x + 8)*exp(x). (End)
Sum_{n>=1} 1/a(n) = 5/9 + sqrt(1-2/sqrt(5))*Pi/6 + log(phi)*sqrt(5)/6 - 5*log(5)/12, where phi is the golden ratio (A001622). - Amiram Eldar, Aug 21 2022

Extensions

More terms from Emeric Deutsch, Apr 17 2007
Showing 1-6 of 6 results.