cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A210982 Zero together with A126264 and positive terms of A051624 interleaved.

Original entry on oeis.org

0, 1, 8, 12, 26, 33, 54, 64, 92, 105, 140, 156, 198, 217, 266, 288, 344, 369, 432, 460, 530, 561, 638, 672, 756, 793, 884, 924, 1022, 1065, 1170, 1216, 1328, 1377, 1496, 1548, 1674, 1729, 1862, 1920, 2060, 2121, 2268, 2332, 2486, 2553, 2714, 2784, 2952, 3025, 3200, 3276, 3458, 3537, 3726
Offset: 0

Views

Author

Omar E. Pol, Aug 03 2012

Keywords

Comments

Vertex number of a square spiral similar to A195162.
This is the case k=5 of the formula b(n,k) = ( 2*(k+5)*n^2+2*(k+3)*n-(k+1)+(2*(k-1)*n+k+1)*(-1)^n )/16. Sequences of the same family: A093025 (k=-1, with an initial 0), A210977 (k=0), A006578 (k=1), A210978 (k=2), A181995 (k=3, with one 0 only), A210981 (k=4). - Luce ETIENNE, Oct 30 2014

Crossrefs

Members of this family are A093005, A210977, A006578, A210978, A181995, A210981, this sequence.

Programs

  • Magma
    [(10*n^2+8*n-3+(4*n+3)*(-1)^n )/8: n in [0..60]]; // Vincenzo Librandi, Oct 31 2014
    
  • Mathematica
    Table[(10*n^2 + 8*n - 3 + (4*n + 3)*(-1)^n)/8, {n, 0, 50}] (* G. C. Greubel, Aug 23 2017 *)
  • PARI
    my(x='x+O('x^50)); Vec(x*(1+7*x+2*x^2)/((1+x)^2*(1-x)^3)) \\ G. C. Greubel, Aug 23 2017

Formula

G.f.: x*(1+7*x+2*x^2) / ( (1+x)^2*(1-x)^3 ). - R. J. Mathar, Aug 07 2012
a(n) = (10*n^2 +8*n -3 +(4*n+3)*(-1)^n)/8. - Luce ETIENNE, Oct 14 2014
E.g.f.: (1/8)*((10*x^3 + 18*x -3)*exp(x) - (4*x - 3)*exp(-x)). - G. C. Greubel, Aug 23 2017
Sum_{n>=1} 1/a(n) = 5/9 + (sqrt(1-2/sqrt(5))/6 + sqrt(1+2/sqrt(5))/8)*Pi + 7*log(phi)*sqrt(5)/24 - 5*log(5)/48, where phi is the golden ratio (A001622). - Amiram Eldar, Aug 21 2022

A202803 a(n) = n*(5*n+1).

Original entry on oeis.org

0, 6, 22, 48, 84, 130, 186, 252, 328, 414, 510, 616, 732, 858, 994, 1140, 1296, 1462, 1638, 1824, 2020, 2226, 2442, 2668, 2904, 3150, 3406, 3672, 3948, 4234, 4530, 4836, 5152, 5478, 5814, 6160, 6516, 6882, 7258, 7644, 8040, 8446, 8862, 9288, 9724, 10170
Offset: 0

Views

Author

Jeremy Gardiner, Dec 24 2011

Keywords

Comments

First bisection of A219190. - Bruno Berselli, Nov 15 2012
a(n)*Pi is the total length of 5 points circle center spiral after n rotations. The spiral length at each rotation (L(n)) is A017341. The spiral length ratio rounded down [floor(L(n)/L(1))] is A032793. See illustration in links. - Kival Ngaokrajang, Dec 27 2013

Examples

			G.f. = 6*x + 22*x^2 + 48*x^3 + 84*x^4 + 130*x^5 +186*x^6 + 252*x^7 + 328*x^8 + ...
		

Crossrefs

Cf. sequences listed in A254963.

Programs

Formula

a(n) = 5*n^2 + n.
a(n) = A033429(n) + n. - Omar E. Pol, Dec 24 2011
G.f.: 2*x*(3+2*x)/(1-x)^3. - Philippe Deléham, Mar 27 2013
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) with a(0) = 0, a(1) = 6, a(2) = 22. - Philippe Deléham, Mar 27 2013
a(n) = A131242(10n+5). - Philippe Deléham, Mar 27 2013
a(n) = 2*A005475(n). - Philippe Deléham, Mar 27 2013
a(n) = A168668(n) - n. - Philippe Deléham, Mar 27 2013
a(n) = (n+1)^3 - (1 + n + n*(n-1) + n*(n-1)*(n-2)). - Michael Somos, Aug 10 2014
E.g.f.: x*(6+5*x)*exp(x). - G. C. Greubel, Aug 22 2017
Sum_{n>=1} 1/a(n) = 5*(1-log(5)/4) - sqrt(1+2/sqrt(5))*Pi/2 -sqrt(5)*log(phi)/2, where phi is the golden ratio (A001622). - Amiram Eldar, Jul 19 2022
Showing 1-2 of 2 results.