A014105
Second hexagonal numbers: a(n) = n*(2*n + 1).
Original entry on oeis.org
0, 3, 10, 21, 36, 55, 78, 105, 136, 171, 210, 253, 300, 351, 406, 465, 528, 595, 666, 741, 820, 903, 990, 1081, 1176, 1275, 1378, 1485, 1596, 1711, 1830, 1953, 2080, 2211, 2346, 2485, 2628, 2775, 2926, 3081, 3240, 3403, 3570, 3741, 3916, 4095, 4278
Offset: 0
For n=6, a(6) = 0^2 - 1^2 + 2^2 - 3^2 + 4^2 - 5^2 + 6^2 - 7^2 + 8^2 - 9^2 + 10^2 - 11^2 + 12^2 = 78. - _Bruno Berselli_, Aug 29 2013
- Louis Comtet, Advanced Combinatorics, Reidel, 1974, pp. 77-78. (In the integral formula on p. 77 a left bracket is missing for the cosine argument.)
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Matthew Cho, Anton Dochtermann, Ryota Inagaki, Suho Oh, Dylan Snustad, and Bailee Zacovic, Chip-firing and critical groups of signed graphs, arXiv:2306.09315 [math.CO], 2023. See p. 22.
- Robert FERREOL, Illustration: triangular numbers of even order
- Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
- Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
- Milan Janjic, Two Enumerative Functions, University of Banja Luka (Bosnia and Herzegovina, 2017).
- Ângela Mestre and José Agapito, Square Matrices Generated by Sequences of Riordan Arrays, J. Int. Seq., Vol. 22 (2019), Article 19.8.4.
- Kival Ngaokrajang, Illustration of half circle spiral.
- Markus Scheuer, show that; strange sum yields triangular numbers, Mathematics StackExchange.
- Amelia Carolina Sparavigna, The groupoids of Mersenne, Fermat, Cullen, Woodall and other Numbers and their representations by means of integer sequences, Politecnico di Torino, Italy (2019).
- Amelia Carolina Sparavigna, The groupoid of the Triangular Numbers and the generation of related integer sequences, Politecnico di Torino, Italy (2019).
- Leo Tavares, Illustration: Squared Hexagons.
- Index entries for two-way infinite sequences
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
-
List([0..50],n->n*(2*n+1)); # Muniru A Asiru, Oct 31 2018
-
a014105 n = n * (2 * n + 1)
a014105_list = scanl (+) 0 a004767_list -- Reinhard Zumkeller, Oct 03 2012
-
[ n*(2*n+1) : n in [0..50] ]; // Wesley Ivan Hurt, Jun 14 2014
-
seq(binomial(2*n+1,2), n=0..46); # Zerinvary Lajos, Jan 21 2007
-
Table[n*(2*n+1), {n,0,100}] (* Vladimir Joseph Stephan Orlovsky, Nov 16 2008 *)
LinearRecurrence[{3,-3,1},{0,3,10},50] (* Harvey P. Dale, Feb 10 2015 *)
CoefficientList[Series[x*(3 + x)/(1 - x)^3,{x, 0, 50}], x] (* Stefano Spezia, Sep 02 2018 *)
-
a(n)=n*(2*n+1)
-
[n*(2*n+1) for n in range(50)] # G. C. Greubel, Dec 16 2018
A046092
4 times triangular numbers: a(n) = 2*n*(n+1).
Original entry on oeis.org
0, 4, 12, 24, 40, 60, 84, 112, 144, 180, 220, 264, 312, 364, 420, 480, 544, 612, 684, 760, 840, 924, 1012, 1104, 1200, 1300, 1404, 1512, 1624, 1740, 1860, 1984, 2112, 2244, 2380, 2520, 2664, 2812, 2964, 3120, 3280, 3444, 3612, 3784, 3960, 4140, 4324
Offset: 0
a(7)=112 because 112 = 2*7*(7+1).
The first few triples are (1,0,1), (3,4,5), (5,12,13), (7,24,25), ...
The first such partitions, corresponding to a(n)=1,2,3,4, are 2+2, 4+4+2+2, 6+6+4+4+2+2, 8+8+6+6+4+4+2+2. - _Augustine O. Munagi_, Dec 18 2008
- George E. Andrews and Bruce C. Berndt, Ramanujan's Lost Notebook, Part I, Springer, 2005.
- Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 3.
- Albert H. Beiler, Recreations in the Theory of Numbers. New York: Dover, p. 125, 1964.
- Ronald L. Graham, D. E. Knuth and Oren Patashnik, Concrete Mathematics, Reading, Massachusetts: Addison-Wesley, 1994.
- Peter Winkler, Mathematical Mind-Benders, Wellesley, Massachusetts: A K Peters, 2007.
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Allan Bickle and Zhongyuan Che, Irregularities of Maximal k-degenerate Graphs, Discrete Applied Math. 331 (2023) 70-87.
- Allan Bickle, A Survey of Maximal k-degenerate Graphs and k-Trees, Theory and Applications of Graphs 0 1 (2024) Article 5.
- H. J. Brothers, Pascal's Prism: Supplementary Material.
- Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Exact and asymptotic solutions of the recurrence f(n) = f(floor(n/2)) + f(ceiling(n/2)) + g(n): theory and applications, preprint, 2016.
- Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Exact and Asymptotic Solutions of a Divide-and-Conquer Recurrence Dividing at Half: Theory and Applications, ACM Transactions on Algorithms, Vol. 13, No. 4 (2017), Article #47.
- Z. Janelidze, F. van Niekerk, and J. Viljoen, What is the maximal connected partial symmetry index of a connected graph of a given size?, arXiv:2502.00704 [math.CO], 2025. See p. 3.
- Milan Janjic, Two Enumerative Functions
- Ron Knott, Pythagorean Triples and Online Calculators
- Tanya Khovanova, A Miracle Equation.
- Augustine O. Munagi, Pairing conjugate partitions by residue classes, Discrete Math., 308 (2008), 2492-2501. [From _Augustine O. Munagi_, Dec 18 2008]
- Enrique Navarrete and Daniel Orellana, Finding Prime Numbers as Fixed Points of Sequences, arXiv:1907.10023 [math.NT], 2019.
- Omar E. Pol, Determinacion geometrica de los numeros primos y perfectos.
- Amelia Carolina Sparavigna, The groupoids of Mersenne, Fermat, Cullen, Woodall and other Numbers and their representations by means of integer sequences, Politecnico di Torino, Italy (2019), [math.NT].
- Amelia Carolina Sparavigna, Some Groupoids and their Representations by Means of Integer Sequences, International Journal of Sciences (2019) Vol. 8, No. 10.
- Rusliansyah D. Suprijanto, Observation on Sums of Powers of Integers Divisible by Four, Applied Mathematical Sciences, Vol. 8, 2014, no. 45, 2219 - 2226.
- Leo Tavares, Illustration: Diamond Rows
- Herman Tulleken, Polyominoes 2.2: How they fit together, (2019).
- Eric Weisstein's World of Mathematics, Aztec Diamond.
- Eric Weisstein's World of Mathematics, Cocktail Party Graph.
- Eric Weisstein's World of Mathematics, Connected Dominating Set.
- Eric Weisstein's World of Mathematics, Gear Graph.
- Eric Weisstein's World of Mathematics, Hamiltonian Path.
- Eric Weisstein's World of Mathematics, Pythagorean Triple.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Cf.
A045943,
A028895,
A002943,
A054000,
A000330,
A007290,
A002378,
A033996,
A124080,
A028896,
A049598,
A005563,
A000217,
A033586,
A085250.
Cf. similar sequences listed in
A299645.
-
a046092 = (* 2) . a002378 -- Reinhard Zumkeller, Dec 15 2013
-
[2*n*(n+1): n in [0..50]]; // Vincenzo Librandi, Oct 04 2011
-
Table[2 n (n + 1), {n, 0, 50}] (* Stefan Steinerberger, Apr 03 2006 *)
LinearRecurrence[{3, -3, 1}, {0, 4, 12}, 50] (* Harvey P. Dale, Jul 25 2011 *)
4*Binomial[Range[50], 2] (* Harvey P. Dale, Jul 25 2011 *)
-
A046092(n):=2*n*(n+1)$
makelist(A046092(n),n,0,30); /* Martin Ettl, Nov 08 2012 */
-
a(n)=binomial(n+1,2)<<2 \\ Charles R Greathouse IV, Jun 10 2011
-
def A046092(n): return n*(n+1)<<1 # Chai Wah Wu, Mar 11 2025
A049450
Pentagonal numbers multiplied by 2: a(n) = n*(3*n-1).
Original entry on oeis.org
0, 2, 10, 24, 44, 70, 102, 140, 184, 234, 290, 352, 420, 494, 574, 660, 752, 850, 954, 1064, 1180, 1302, 1430, 1564, 1704, 1850, 2002, 2160, 2324, 2494, 2670, 2852, 3040, 3234, 3434, 3640, 3852, 4070, 4294, 4524, 4760, 5002, 5250, 5504, 5764
Offset: 0
Joe Keane (jgk(AT)jgk.org)
On a 4 X 4 chessboard pawns at the second row have (3+4+4+3) moves and pawns at the third row have (2+3+3+2) moves so a(3) = 24. - _Johannes W. Meijer_, Feb 04 2010
From _Adi Dani_, Jun 04 2011: (Start)
a(1)=2: the partitions of 6*1-1=5 into 3 parts are [1,1,3] and[1,2,2].
a(2)=10: the partitions of 6*2-1=11 into 3 parts are [1,1,9], [1,2,8], [1,3,7], [1,4,6], [1,5,5], [2,2,7], [2,3,6], [2,4,5], [3,3,5], and [3,4,4].
(End)
.
. o
. o o o
. o o o o o o
. o o o o o o o o o o
. o o o o o o o o o o o o o o o
. o o o o o o o o o o o o o o o o o o o
. o o o o o o o o o o o o o o o o o o o o o o
. o o o o o o o o o o o o o o o o o o o o o o o o
. o o o o o o o o o o o o o o o o o o o o o o o o o
. o o o o o o o o o o o o o o o o o o o o o o o o o
. 2 10 24 44 70
- _Philippe Deléham_, Mar 30 2013
-
List([0..50], n-> n*(3*n-1)); # G. C. Greubel, Aug 31 2019
-
[n*(3*n-1) : n in [0..50]]; // Wesley Ivan Hurt, Sep 24 2017
-
seq(n*(3*n-1),n=0..44); # Zerinvary Lajos, Jun 12 2007
-
Table[n(3n-1),{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{0,2,10},50] (* Harvey P. Dale, Jun 21 2014 *)
2*PolygonalNumber[5,Range[0,50]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 01 2018 *)
-
a(n)=n*(3*n-1) \\ Charles R Greathouse IV, Nov 20 2012
-
[n*(3*n-1) for n in (0..50)] # G. C. Greubel, Aug 31 2019
A035008
Total number of possible knight moves on an (n+2) X (n+2) chessboard, if the knight is placed anywhere.
Original entry on oeis.org
0, 16, 48, 96, 160, 240, 336, 448, 576, 720, 880, 1056, 1248, 1456, 1680, 1920, 2176, 2448, 2736, 3040, 3360, 3696, 4048, 4416, 4800, 5200, 5616, 6048, 6496, 6960, 7440, 7936, 8448, 8976, 9520, 10080, 10656, 11248, 11856, 12480, 13120, 13776
Offset: 0
Ulrich Schimke (ulrschimke(AT)aol.com), Dec 11 1999
3 X 3-Board: knight can be placed in 8 positions with 2 moves from each, so a(1) = 16.
-
[8*n*(n+1): n in [0..50]]; // Wesley Ivan Hurt, May 22 2014
-
seq(binomial(n+1,2)*4^2, n=0..33); # Zerinvary Lajos, Aug 07 2008
-
CoefficientList[Series[16 x/(1 - x)^3, {x, 0, 40}], x] (* Vincenzo Librandi, Feb 24 2014 *)
LinearRecurrence[{3,-3,1},{0,16,48},50] (* or *) 16*Accumulate[ Range[ 0,50]] (* Harvey P. Dale, Aug 05 2018 *)
-
a(n)=8*n*(n+1) \\ Charles R Greathouse IV, Sep 30 2015
A002492
Sum of the first n even squares: 2*n*(n+1)*(2*n+1)/3.
Original entry on oeis.org
0, 4, 20, 56, 120, 220, 364, 560, 816, 1140, 1540, 2024, 2600, 3276, 4060, 4960, 5984, 7140, 8436, 9880, 11480, 13244, 15180, 17296, 19600, 22100, 24804, 27720, 30856, 34220, 37820, 41664, 45760, 50116, 54740, 59640, 64824, 70300, 76076, 82160
Offset: 0
- A. O. Barut, Group Structure of the Periodic System, in Wybourne, Ed., The Structure of Matter, University of Canterbury Press, Christchurch, 1972, p. 126.
- Edward G. Mazur, Graphic Representation of the Periodic System during One Hundred Years, University of Alabama Press, Alabama, 1974.
- W. Permans and J. Kemperman, "Nummeringspribleem van S. Dockx, Mathematisch Centrum. Amsterdam," Rapport ZW; 1949-005, 4 leaves, 19.8 X 34 cm.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Jose Manuel Garcia Calcines, Luis Javier Hernandez Paricio, and Maria Teresa Rivas Rodriguez, Semi-simplicial combinatorics of cyclinders and subdivisions, arXiv:2307.13749 [math.CO], 2023. See p. 32.
- Milan Janjic, Two Enumerative Functions
- Milan Janjić, On Restricted Ternary Words and Insets, arXiv:1905.04465 [math.CO], 2019.
- Milan Janjic and Boris Petkovic, A Counting Function, arXiv preprint arXiv:1301.4550 [math.CO], 2013. - From _N. J. A. Sloane_, Feb 13 2013
- Milan Janjic and Boris Petkovic, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, J. Int. Seq. 17 (2014), Article #14.3.5.
- Ângela Mestre and José Agapito, Square Matrices Generated by Sequences of Riordan Arrays, J. Int. Seq., Vol. 22 (2019), Article 19.8.4.
- D. Neubert, Double Shell Structure of the Periodic System of the Elements, Z. Naturforschung, 25A (1970), p. 210.
- Karl-Dietrich Neubert, Double-Shell PSE: Metals - Nonmetals.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992, arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- D. Suprijanto and Rusliansyah, Observation on Sums of Powers of Integers Divisible by Four, Applied Mathematical Sciences, Vol. 8, No. 45 (2014), pp. 2219-2226.
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for two-way infinite sequences.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
-
[2*n*(n+1)*(2*n+1)/3: n in [0..40]]; // Vincenzo Librandi, Jun 16 2011
-
A002492:=n->2*n*(n+1)*(2*n+1)/3; seq(A002492(n), n=0..50); # Wesley Ivan Hurt, Apr 04 2014
-
Table[2n(n+1)(2n+1)/3, {n,0,40}] (* or *) Binomial[2*Range[0,40]+2,3] (* or *) LinearRecurrence[{4,-6,4,-1}, {0,4,20,56},40] (* Harvey P. Dale, Aug 15 2012 *)
Accumulate[(2*Range[0,40])^2] (* Harvey P. Dale, Jun 04 2019 *)
-
a(n)=2*n*(n+1)*(2*n+1)/3
A051870
18-gonal (or octadecagonal) numbers: a(n) = n*(8*n-7).
Original entry on oeis.org
0, 1, 18, 51, 100, 165, 246, 343, 456, 585, 730, 891, 1068, 1261, 1470, 1695, 1936, 2193, 2466, 2755, 3060, 3381, 3718, 4071, 4440, 4825, 5226, 5643, 6076, 6525, 6990, 7471, 7968, 8481, 9010, 9555, 10116, 10693, 11286, 11895, 12520
Offset: 0
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, p. 189.
- Elena Deza and Michel Marie Deza, Figurate numbers, World Scientific Publishing, 2012, page 6.
A139275
a(n) = n*(8*n+1).
Original entry on oeis.org
0, 9, 34, 75, 132, 205, 294, 399, 520, 657, 810, 979, 1164, 1365, 1582, 1815, 2064, 2329, 2610, 2907, 3220, 3549, 3894, 4255, 4632, 5025, 5434, 5859, 6300, 6757, 7230, 7719, 8224, 8745, 9282, 9835, 10404, 10989, 11590, 12207, 12840
Offset: 0
Cf.
A000217,
A014634,
A014635,
A033585,
A033586,
A033587,
A035008,
A051870,
A069129,
A085250,
A072279,
A139272,
A139273,
A139274,
A139276,
A139278,
A139279,
A139280,
A139281,
A139282.
-
Table[n (8 n + 1), {n, 0, 40}] (* Bruno Berselli, Sep 21 2016 *)
LinearRecurrence[{3,-3,1},{0,9,34},50] (* Harvey P. Dale, Apr 21 2020 *)
-
a(n) = n*(8*n+1); \\ Altug Alkan, Sep 21 2016
A139271
a(n) = 2*n*(4*n-3).
Original entry on oeis.org
0, 2, 20, 54, 104, 170, 252, 350, 464, 594, 740, 902, 1080, 1274, 1484, 1710, 1952, 2210, 2484, 2774, 3080, 3402, 3740, 4094, 4464, 4850, 5252, 5670, 6104, 6554, 7020, 7502, 8000, 8514, 9044, 9590, 10152, 10730, 11324, 11934, 12560, 13202, 13860, 14534, 15224
Offset: 0
Cf.
A000217,
A014634,
A014635,
A033585,
A033586,
A033587,
A035008,
A051870,
A069129,
A085250,
A139272,
A139273,
A139274,
A139275,
A139276,
A139278,
A139279,
A139280,
A139281,
A139282.
Cf. numbers of the form n*(n*k-k+4)/2 listed in
A226488 (this sequence is the case k=16). -
Bruno Berselli, Jun 10 2013
-
Table[8n^2-6n,{n,0,40}] (* or *) LinearRecurrence[{3,-3,1},{0,2,20},50] (* Harvey P. Dale, Sep 26 2016 *)
-
a(n)=2*n*(4*n-3) \\ Charles R Greathouse IV, Jun 17 2017
A139273
a(n) = n*(8*n - 3).
Original entry on oeis.org
0, 5, 26, 63, 116, 185, 270, 371, 488, 621, 770, 935, 1116, 1313, 1526, 1755, 2000, 2261, 2538, 2831, 3140, 3465, 3806, 4163, 4536, 4925, 5330, 5751, 6188, 6641, 7110, 7595, 8096, 8613, 9146, 9695, 10260, 10841, 11438, 12051, 12680
Offset: 0
Cf.
A000217,
A014634,
A014635,
A033585,
A033586,
A033587,
A035008,
A051870,
A069129,
A085250,
A072279,
A139272,
A139274,
A139275,
A139276,
A139278,
A139279,
A139280,
A139281,
A139282.
Cf. numbers of the form n*(d*n+10-d)/2:
A008587,
A056000,
A028347,
A140090,
A014106,
A028895,
A045944,
A186029,
A007742,
A022267,
A033429,
A022268,
A049452,
A186030,
A135703,
A152734.
-
[ n*(8*n-3) : n in [0..40] ]; // Bruno Berselli, Feb 11 2011
-
Table[n (8 n - 3), {n, 0, 40}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 5, 26}, 40] (* Harvey P. Dale, Feb 02 2012 *)
-
a(n)=n*(8*n-3) \\ Charles R Greathouse IV, Sep 24 2015
A139278
a(n) = n*(8*n+7).
Original entry on oeis.org
0, 15, 46, 93, 156, 235, 330, 441, 568, 711, 870, 1045, 1236, 1443, 1666, 1905, 2160, 2431, 2718, 3021, 3340, 3675, 4026, 4393, 4776, 5175, 5590, 6021, 6468, 6931, 7410, 7905, 8416, 8943, 9486, 10045, 10620, 11211, 11818, 12441, 13080
Offset: 0
Cf.
A000217,
A014634,
A014635,
A033585,
A033586,
A033587,
A035008,
A051870,
A069129,
A085250,
A072279,
A139272,
A139273,
A139274,
A139275,
A139276,
A139277,
A139279,
A139280,
A139281,
A139282.
-
Table[n (8 n + 7), {n, 0, 40}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 15, 46}, 50] (* Harvey P. Dale, Oct 07 2015 *)
-
a(n)=n*(8*n+7) \\ Charles R Greathouse IV, Jun 17 2017
Showing 1-10 of 23 results.
Comments