a(0) = 0, a(1) = 1; for n >= 2, a(n) = 34 * a(n-1) - a(n-2) + 2.
G.f.: x*(1 + x) / (( 1 - x )*( 1 - 34*x + x^2 )).
a(n-1) * a(n+1) = (a(n)-1)^2. - Colin Dickson, posting to alt.math.recreational, Mar 07 2004
If L is a square-triangular number, then the next one is 1 + 17*L + 6*sqrt(L + 8*L^2). -
Lekraj Beedassy, Jun 27 2001
a(n) - a(n-1) =
A046176(n). - Sophie Kuo (ejiqj_6(AT)yahoo.com.tw), May 27 2006
a(n) = (((17+12*sqrt(2))^n) + ((17-12*sqrt(2))^n)-2)/32. - Bruce Corrigan (scentman(AT)myfamily.com), Oct 26 2002
Limit_{n->oo} a(n+1)/a(n) = 17 + 12*sqrt(2). See UWC problem link and solution. -
Jaap Spies, Dec 12 2004
a(n) = 35*(a(n-1) - a(n-2)) + a(n-3);
a(n) = -1/16 + ((-24 + 17*sqrt(2))/2^(11/2))*(17 - 12*sqrt(2))^(n-1) + ((24 + 17*sqrt(2))/2^(11/2))*(17 + 12*sqrt(2))^(n-1). (End)
Closed form (as square = triangular): ( (sqrt(2)+1)^(2*n)/(4*sqrt(2)) - (1-sqrt(2))^(2*n)/(4*sqrt(2)) )^2 = (1/2) * ( ( (sqrt(2)+1)^n / 2 - (sqrt(2)-1)^n / 2 )^2 + 1 )*( (sqrt(2)+1)^n / 2 - (sqrt(2)-1)^n / 2 )^2. -
Bill Gosper, Jul 25 2008
a(n) = floor((17 + 12*sqrt(2))*a(n-1)) + 3 = floor(3*sqrt(2)/4 + (17 + 12*sqrt(2))*a(n-1) + 1). -
Manuel Valdivia, Aug 15 2011
a(2*n) =
A001333(2*n)^2 * (
A001333(2*n)^2 - 1)/2, and a(2*n+1) =
A001333(2*n+1)^2 * (
A001333(2*n+1)^2 + 1)/2. The latter is equivalent to the comment above from Ivan using
A002315, which is a bisection of
A001333. Using
A001333 shows symmetry and helps show that a(n) are both "squares of triangular" and "triangular of squares". -
Richard R. Forberg, Aug 30 2013
a(n) = (T(n,17) - 1)/16, where T(n,x) denotes the Chebyshev polynomial of the first kind.
a(n) = U(n-1,3)^2, for n >= 1, where U(n,x) denotes the Chebyshev polynomial of the second kind.
a(n) = the bottom left entry of the 2 X 2 matrix T(n, M), where M is the 2 X 2 matrix [0, -17; 1, 18].
See the remarks in
A100047 for the general connection between Chebyshev polynomials of the first kind and 4th-order linear divisibility sequences. (End)
a(n) =
A000129(n)^4 + Sum_{k=0..(
A000129(n)^2 - (
A000129(n) mod 2))} 2*k. This formula can be proved graphically by taking the corresponding triangle of a square triangular number and cutting both acute angles, one level at a time (sum of consecutive even numbers), resulting in a square of squares (4th powers).
a(n) =
A002965(2*n)^4 + Sum_{k=
A002965(2*n)^2..
A002965(2*n)*
A002965(2*n + 1) - 1} 2*k + 1. This formula takes an equivalent sum of consecutives, but odd numbers. (End)
E.g.f.: (exp((17-12*sqrt(2))*x) + exp((17+12*sqrt(2))*x) - 2*exp(x))/32. -
Ilya Gutkovskiy, Jul 16 2016
Comments