cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A077221 a(0) = 0 and then alternately even and odd numbers in increasing order such that the sum of any two successive terms is a square.

Original entry on oeis.org

0, 1, 8, 17, 32, 49, 72, 97, 128, 161, 200, 241, 288, 337, 392, 449, 512, 577, 648, 721, 800, 881, 968, 1057, 1152, 1249, 1352, 1457, 1568, 1681, 1800, 1921, 2048, 2177, 2312, 2449, 2592, 2737, 2888, 3041, 3200, 3361, 3528, 3697, 3872, 4049, 4232
Offset: 0

Views

Author

Amarnath Murthy, Nov 03 2002

Keywords

Comments

This sequence arises from reading the line from 0, in the direction 0, 1, ... and the same line from 0, in the direction 0, 8, ..., in the square spiral whose vertices are the triangular numbers A000217. Cf. A139591, etc. - Omar E. Pol, May 03 2008
The general formula for alternating sums of powers of odd integers is in terms of the Swiss-Knife polynomials P(n,x) A153641 (P(n,0)-(-1)^k*P(n,2*k))/2. Here n=2, thus a(k) = |(P(2,0)-(-1)^k*P(2,2*k))/2|. - Peter Luschny, Jul 12 2009
Axis perpendicular to A046092 in the square spiral whose vertices are the triangular numbers A000217. See the comment above. - Omar E. Pol, Sep 14 2011
Column 8 of A195040. - Omar E. Pol, Sep 28 2011
Concentric octagonal numbers. A139098 and A069129 interleaved. - Omar E. Pol, Sep 17 2011
Subsequence of A194274. - Bruno Berselli, Sep 22 2011
Partial sums of A047522. - Reinhard Zumkeller, Jan 07 2012
Alternating sum of the first n odd squares in decreasing order, n >= 1. Also number of "ON" cells at n-th stage in simple 2-dimensional cellular automaton. The rules are: on the infinite square grid, start with all cells OFF, so a(0) = 0. Turn a single cell to the ON state, so a(1) = 1. At each subsequent step, the neighbor cells of each cell of the old generation are turned ON, and the cells of the old generation are turned OFF. Here "neighbor" refers to the eight adjacent cells of each ON cell. See example. - Omar E. Pol, Feb 16 2014

Examples

			From _Omar E. Pol_, Feb 16 2014: (Start)
Illustration of initial terms as a cellular automaton:
.
.                                   O O O O O O O
.                     O O O O O     O           O
.           O O O     O       O     O   O O O   O
.     O     O   O     O   O   O     O   O   O   O
.           O O O     O       O     O   O O O   O
.                     O O O O O     O           O
.                                   O O O O O O O
.
.     1       8           17              32
.
(End)
		

Crossrefs

Programs

Formula

a(2n) = 8*n^2, a(2n+1) = 8*n(n+1) + 1.
From Ralf Stephan, Mar 31 2003: (Start)
a(n) = 2*n^2 + 4*n + 1 [+1 if n is odd] with a(0)=1.
G.f.: x*(x^2+6*x+1)/(1-x)^3/(1+x). (End)
Row sums of triangle A131925; binomial transform of (1, 7, 2, 4, -8, 16, -32, ...). - Gary W. Adamson, Jul 29 2007
a(n) = a(-n); a(n+1) = A195605(n) - (-1)^n. - Bruno Berselli, Sep 22 2011
a(n) = 2*n^2 + ((-1)^n-1)/2. - Omar E. Pol, Sep 28 2011
Sum_{n>=1} 1/a(n) = Pi^2/48 + tan(Pi/(2*sqrt(2)))*Pi /(4*sqrt(2)). - Amiram Eldar, Jan 16 2023

Extensions

Extended by Ralf Stephan, Mar 31 2003

A139592 A033585(n) followed by A139271(n+1).

Original entry on oeis.org

0, 2, 10, 20, 36, 54, 78, 104, 136, 170, 210, 252, 300, 350, 406, 464, 528, 594, 666, 740, 820, 902, 990, 1080, 1176, 1274, 1378, 1484, 1596, 1710, 1830, 1952, 2080, 2210, 2346, 2484, 2628, 2774, 2926, 3080, 3240, 3402, 3570, 3740
Offset: 0

Views

Author

Omar E. Pol, May 03 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 2,... and the same line from 0, in the direction 0, 10,..., in the square spiral whose vertices are the triangular numbers A000217.
a(n) = 2*A006578(n) - A002378(n)/2 = 2*A035608(n). [From Reinhard Zumkeller, Feb 07 2010]

Examples

			Array begins:
0, 2
10, 20
36, 54
78, 104
		

Crossrefs

Formula

Array read by rows: row n gives 8*n^2 + 2n, 8*(n+1)^2 - 6(n+1).
a(n) = 2*floor((n + 1/4)^2). [From Reinhard Zumkeller, Feb 07 2010]
G.f.: 2*x*(1+3*x)/((1-x)^3*(1+x)). [Colin Barker, Apr 26 2012]

A139593 A139276(n) followed by A139272(n+1).

Original entry on oeis.org

0, 3, 11, 22, 38, 57, 81, 108, 140, 175, 215, 258, 306, 357, 413, 472, 536, 603, 675, 750, 830, 913, 1001, 1092, 1188, 1287, 1391, 1498, 1610, 1725, 1845, 1968, 2096, 2227, 2363, 2502, 2646, 2793, 2945, 3100, 3260, 3423, 3591, 3762
Offset: 0

Views

Author

Omar E. Pol, May 03 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 3, ... and the same line from 0, in the direction 0, 11, ..., in the square spiral whose vertices are the triangular numbers A000217.
A139593 appears (both numerically and via back of an envelope algebra, but not a publishable proof) to be the cumulative sum of A047470. - Markus J. Q. Roberts, Jul 12 2009

Examples

			Array begins:
   0,   3;
  11,  22;
  38,  57;
  81, 108;
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2,0,-2,1},{0,3,11,22},50] (* Harvey P. Dale, Feb 09 2019 *)

Formula

Array read by rows: row n gives 8*n^2 + 3n, 8*(n+1)^2 - 5(n+1).
From Colin Barker, Sep 15 2013: (Start)
a(n) = (-1 + (-1)^n + 6*n + 8*n^2)/4.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
G.f.: -x*(5*x+3) / ((x-1)^3*(x+1)). (End)

Extensions

Edited by Omar E. Pol, Jul 13 2009

A139596 A033587(n) followed by even hexagonal number A014635(n+1).

Original entry on oeis.org

0, 6, 14, 28, 44, 66, 90, 120, 152, 190, 230, 276, 324, 378, 434, 496, 560, 630, 702, 780, 860, 946, 1034, 1128, 1224, 1326, 1430, 1540, 1652, 1770, 1890, 2016, 2144, 2278, 2414, 2556, 2700, 2850, 3002, 3160, 3320, 3486, 3654, 3828
Offset: 0

Views

Author

Omar E. Pol, May 03 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 6,... and the same line from 0, in the direction 0, 14,..., in the square spiral whose vertices are the triangular numbers A000217.

Examples

			Array begins:
0, 6
14, 28
44, 66
90, 120
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2,0,-2,1},{0,6,14,28},50] (* Harvey P. Dale, Jan 20 2024 *)

Formula

Array read by rows: row n gives 8*n^2 + 6*n, 8*(n+1)^2 - 2(n+1).
O.g.f.: -2*x*(x+3)/((x-1)^3*(1+x)). - R. J. Mathar, May 06 2008
a(n) = 2*A156859(n). - R. J. Mathar, Feb 28 2018

A139598 A035008(n) followed by A139098(n+1).

Original entry on oeis.org

0, 8, 16, 32, 48, 72, 96, 128, 160, 200, 240, 288, 336, 392, 448, 512, 576, 648, 720, 800, 880, 968, 1056, 1152, 1248, 1352, 1456, 1568, 1680, 1800, 1920, 2048, 2176, 2312, 2448, 2592, 2736, 2888, 3040, 3200, 3360, 3528, 3696, 3872
Offset: 0

Views

Author

Omar E. Pol, May 03 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 8, ... and the line from 16, in the direction 16, 48, ..., in the square spiral whose vertices are the triangular numbers A000217.
Also represents the minimum number of segments in the smooth Jordan curve which crosses every edge of an n X n square lattice exactly once. For example, the curve for a 3 X 3 lattice would have at least 32 segments. - Nikolas Novakovic, Aug 28 2022

Examples

			Array begins:
   0,   8;
  16,  32;
  48,  72;
  96, 128;
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2,0,-2,1},{0,8,16,32},50] (* Harvey P. Dale, Sep 27 2019 *)

Formula

Array read by rows: row n gives 8*n^2 + 8*n, 8*(n+1)^2.
From Colin Barker, Jul 22 2012: (Start)
a(n) = (1 - (-1)^n + 4*n + 2*n^2).
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
G.f.: 8*x/((1-x)^3*(1+x)). (End)
a(n) = 8*A002620(n+1). - R. J. Mathar, May 04 2014

A139595 A139277(n) followed by A139273(n+1).

Original entry on oeis.org

0, 5, 13, 26, 42, 63, 87, 116, 148, 185, 225, 270, 318, 371, 427, 488, 552, 621, 693, 770, 850, 935, 1023, 1116, 1212, 1313, 1417, 1526, 1638, 1755, 1875, 2000, 2128, 2261, 2397, 2538, 2682, 2831, 2983, 3140, 3300, 3465, 3633, 3806
Offset: 0

Views

Author

Omar E. Pol, May 03 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 5,... and the same line from 0, in the direction 0, 13,..., in the square spiral whose vertices are the triangular numbers A000217.

Examples

			Array begins:
0, 5
13, 26
42, 63
87, 116
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2,0,-2,1},{0,5,13,26},50] (* Harvey P. Dale, Jul 31 2021 *)

Formula

Array read by rows: row n gives 8*n^2 + 5n, 8*(n+1)^2 - 3(n+1).
G.f.: -x*(5+3*x) / ( (1+x)*(x-1)^3 ). - R. J. Mathar, Feb 13 2011

A139597 A139278(n) followed by A139274(n+1).

Original entry on oeis.org

0, 7, 15, 30, 46, 69, 93, 124, 156, 195, 235, 282, 330, 385, 441, 504, 568, 639, 711, 790, 870, 957, 1045, 1140, 1236, 1339, 1443, 1554, 1666, 1785, 1905, 2032, 2160, 2295, 2431, 2574, 2718, 2869, 3021, 3180, 3340, 3507, 3675, 3850
Offset: 0

Views

Author

Omar E. Pol, May 03 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 7,... and the line from 15, in the direction 15, 46,..., in the square spiral whose vertices are the triangular numbers A000217.

Examples

			Array begins:
0, 7
15, 30
46, 69
93, 124
		

Crossrefs

Formula

Array read by rows: row n gives 8*n^2 + 7n, 8*(n+1)^2 - (n+1).
a(n) = (3-3*(-1)^n+14*n+8*n^2)/4. a(n) = 2*a(n-1)-2*a(n-3)+a(n-4). G.f.: x*(7+x)/((1-x)^3*(1+x)). [Colin Barker, Jul 22 2012]
Showing 1-7 of 7 results.