cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A139592 A033585(n) followed by A139271(n+1).

Original entry on oeis.org

0, 2, 10, 20, 36, 54, 78, 104, 136, 170, 210, 252, 300, 350, 406, 464, 528, 594, 666, 740, 820, 902, 990, 1080, 1176, 1274, 1378, 1484, 1596, 1710, 1830, 1952, 2080, 2210, 2346, 2484, 2628, 2774, 2926, 3080, 3240, 3402, 3570, 3740
Offset: 0

Views

Author

Omar E. Pol, May 03 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 2,... and the same line from 0, in the direction 0, 10,..., in the square spiral whose vertices are the triangular numbers A000217.
a(n) = 2*A006578(n) - A002378(n)/2 = 2*A035608(n). [From Reinhard Zumkeller, Feb 07 2010]

Examples

			Array begins:
0, 2
10, 20
36, 54
78, 104
		

Crossrefs

Formula

Array read by rows: row n gives 8*n^2 + 2n, 8*(n+1)^2 - 6(n+1).
a(n) = 2*floor((n + 1/4)^2). [From Reinhard Zumkeller, Feb 07 2010]
G.f.: 2*x*(1+3*x)/((1-x)^3*(1+x)). [Colin Barker, Apr 26 2012]

A139596 A033587(n) followed by even hexagonal number A014635(n+1).

Original entry on oeis.org

0, 6, 14, 28, 44, 66, 90, 120, 152, 190, 230, 276, 324, 378, 434, 496, 560, 630, 702, 780, 860, 946, 1034, 1128, 1224, 1326, 1430, 1540, 1652, 1770, 1890, 2016, 2144, 2278, 2414, 2556, 2700, 2850, 3002, 3160, 3320, 3486, 3654, 3828
Offset: 0

Views

Author

Omar E. Pol, May 03 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 6,... and the same line from 0, in the direction 0, 14,..., in the square spiral whose vertices are the triangular numbers A000217.

Examples

			Array begins:
0, 6
14, 28
44, 66
90, 120
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2,0,-2,1},{0,6,14,28},50] (* Harvey P. Dale, Jan 20 2024 *)

Formula

Array read by rows: row n gives 8*n^2 + 6*n, 8*(n+1)^2 - 2(n+1).
O.g.f.: -2*x*(x+3)/((x-1)^3*(1+x)). - R. J. Mathar, May 06 2008
a(n) = 2*A156859(n). - R. J. Mathar, Feb 28 2018

A139598 A035008(n) followed by A139098(n+1).

Original entry on oeis.org

0, 8, 16, 32, 48, 72, 96, 128, 160, 200, 240, 288, 336, 392, 448, 512, 576, 648, 720, 800, 880, 968, 1056, 1152, 1248, 1352, 1456, 1568, 1680, 1800, 1920, 2048, 2176, 2312, 2448, 2592, 2736, 2888, 3040, 3200, 3360, 3528, 3696, 3872
Offset: 0

Views

Author

Omar E. Pol, May 03 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 8, ... and the line from 16, in the direction 16, 48, ..., in the square spiral whose vertices are the triangular numbers A000217.
Also represents the minimum number of segments in the smooth Jordan curve which crosses every edge of an n X n square lattice exactly once. For example, the curve for a 3 X 3 lattice would have at least 32 segments. - Nikolas Novakovic, Aug 28 2022

Examples

			Array begins:
   0,   8;
  16,  32;
  48,  72;
  96, 128;
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2,0,-2,1},{0,8,16,32},50] (* Harvey P. Dale, Sep 27 2019 *)

Formula

Array read by rows: row n gives 8*n^2 + 8*n, 8*(n+1)^2.
From Colin Barker, Jul 22 2012: (Start)
a(n) = (1 - (-1)^n + 4*n + 2*n^2).
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
G.f.: 8*x/((1-x)^3*(1+x)). (End)
a(n) = 8*A002620(n+1). - R. J. Mathar, May 04 2014

A139591 A139275(n) followed by 18-gonal number A051870(n+1).

Original entry on oeis.org

0, 1, 9, 18, 34, 51, 75, 100, 132, 165, 205, 246, 294, 343, 399, 456, 520, 585, 657, 730, 810, 891, 979, 1068, 1164, 1261, 1365, 1470, 1582, 1695, 1815, 1936, 2064, 2193, 2329, 2466, 2610, 2755, 2907, 3060, 3220, 3381, 3549, 3718, 3894, 4071, 4255, 4440, 4632
Offset: 0

Views

Author

Omar E. Pol, May 03 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 9, ... and the line from 1, in the direction 1, 18, ..., in the square spiral whose vertices are the triangular numbers A000217.

Examples

			Array begins:
   0,   1;
   9,  18;
  34,  51;
  75, 100;
  ...
		

Crossrefs

Formula

Array read by rows: row n gives 8*n^2 + n, 8*(n+1)^2 - 7*(n+1).
G.f.: -x*(7*x+1)/((x-1)^3*(x+1)). - Colin Barker, Oct 16 2012
a(n) = 2*n^2 + (7/2)*n + (3/4)*((-1)^n-1). - Sean A. Irvine, Jul 14 2022

A195605 a(n) = (4*n*(n+2)+(-1)^n+1)/2 + 1.

Original entry on oeis.org

2, 7, 18, 31, 50, 71, 98, 127, 162, 199, 242, 287, 338, 391, 450, 511, 578, 647, 722, 799, 882, 967, 1058, 1151, 1250, 1351, 1458, 1567, 1682, 1799, 1922, 2047, 2178, 2311, 2450, 2591, 2738, 2887, 3042, 3199, 3362, 3527, 3698, 3871, 4050, 4231, 4418, 4607, 4802
Offset: 0

Views

Author

Bruno Berselli, Sep 21 2011 - based on remarks and sequences by Omar E. Pol

Keywords

Comments

Sequence found by reading the numbers in increasing order on the vertical line containing 2 of the square spiral whose vertices are the triangular numbers (A000217) - see Pol's comments in other sequences visible in this numerical spiral.
Also A077591 (without first term) and A157914 interleaved.

Crossrefs

Cf. A047621 (contains first differences), A016754 (contains the sum of any two consecutive terms).

Programs

  • Magma
    [(4*n*(n+2)+(-1)^n+3)/2: n in [0..48]];
    
  • Mathematica
    CoefficientList[Series[(2 + 3 x + 4 x^2 - x^3) / ((1 + x) (1 - x)^3), {x, 0, 50}], x] (* Vincenzo Librandi, Aug 19 2013 *)
    LinearRecurrence[{2,0,-2,1},{2,7,18,31},50] (* Harvey P. Dale, Jan 21 2017 *)
  • PARI
    for(n=0, 48, print1((4*n*(n+2)+(-1)^n+3)/2", "));

Formula

G.f.: (2+3*x+4*x^2-x^3)/((1+x)*(1-x)^3).
a(n) = a(-n-2) = 2*a(n-1)-2*a(n-3)+a(n-4).
a(n) = A047524(A000982(n+1)).
Sum_{n>=0} 1/a(n) = 1/2 + Pi^2/16 - cot(Pi/(2*sqrt(2)))*Pi/(4*sqrt(2)). - Amiram Eldar, Mar 06 2023

A139595 A139277(n) followed by A139273(n+1).

Original entry on oeis.org

0, 5, 13, 26, 42, 63, 87, 116, 148, 185, 225, 270, 318, 371, 427, 488, 552, 621, 693, 770, 850, 935, 1023, 1116, 1212, 1313, 1417, 1526, 1638, 1755, 1875, 2000, 2128, 2261, 2397, 2538, 2682, 2831, 2983, 3140, 3300, 3465, 3633, 3806
Offset: 0

Views

Author

Omar E. Pol, May 03 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 5,... and the same line from 0, in the direction 0, 13,..., in the square spiral whose vertices are the triangular numbers A000217.

Examples

			Array begins:
0, 5
13, 26
42, 63
87, 116
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2,0,-2,1},{0,5,13,26},50] (* Harvey P. Dale, Jul 31 2021 *)

Formula

Array read by rows: row n gives 8*n^2 + 5n, 8*(n+1)^2 - 3(n+1).
G.f.: -x*(5+3*x) / ( (1+x)*(x-1)^3 ). - R. J. Mathar, Feb 13 2011

A139597 A139278(n) followed by A139274(n+1).

Original entry on oeis.org

0, 7, 15, 30, 46, 69, 93, 124, 156, 195, 235, 282, 330, 385, 441, 504, 568, 639, 711, 790, 870, 957, 1045, 1140, 1236, 1339, 1443, 1554, 1666, 1785, 1905, 2032, 2160, 2295, 2431, 2574, 2718, 2869, 3021, 3180, 3340, 3507, 3675, 3850
Offset: 0

Views

Author

Omar E. Pol, May 03 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 7,... and the line from 15, in the direction 15, 46,..., in the square spiral whose vertices are the triangular numbers A000217.

Examples

			Array begins:
0, 7
15, 30
46, 69
93, 124
		

Crossrefs

Formula

Array read by rows: row n gives 8*n^2 + 7n, 8*(n+1)^2 - (n+1).
a(n) = (3-3*(-1)^n+14*n+8*n^2)/4. a(n) = 2*a(n-1)-2*a(n-3)+a(n-4). G.f.: x*(7+x)/((1-x)^3*(1+x)). [Colin Barker, Jul 22 2012]

A195241 Expansion of (1-x+19*x^3-3*x^4)/(1-x)^3.

Original entry on oeis.org

1, 2, 3, 23, 59, 111, 179, 263, 363, 479, 611, 759, 923, 1103, 1299, 1511, 1739, 1983, 2243, 2519, 2811, 3119, 3443, 3783, 4139, 4511, 4899, 5303, 5723, 6159, 6611, 7079, 7563, 8063, 8579, 9111, 9659, 10223, 10803, 11399, 12011, 12639, 13283, 13943
Offset: 0

Views

Author

Bruno Berselli, Sep 13 2011 - based on remarks and sequences by Omar E. Pol

Keywords

Comments

Sequence found by reading the line 1, 2, 3, 23,.. in the square spiral whose vertices are the triangular numbers (A000217) - see Pol's comments in other sequences visible in this numerical spiral.
This is a subsequence of A110326 (without signs) and A047838 (apart from the second term, 2).

Crossrefs

Programs

  • Magma
    m:=44; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x+19*x^3-3*x^4)/(1-x)^3));
    
  • Mathematica
    CoefficientList[Series[(1 - x + 19 x^3 - 3 x^4)/(1 - x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Mar 26 2013 *)
    LinearRecurrence[{3,-3,1},{1,2,3,23,59},50] (* Harvey P. Dale, Dec 04 2022 *)
  • Maxima
    makelist(coeff(taylor((1-x+19*x^3-3*x^4)/(1-x)^3, x, 0, n), x, n), n, 0, 43);
  • PARI
    Vec((1-x+19*x^3-3*x^4)/(1-x)^3+O(x^44))
    

Formula

G.f.: (1-x+19*x^3-3*x^4)/(1-x)^3.
a(n) = 8*n^2-20*n+11 for n>1; a(0)=1, a(1)=2.
Showing 1-8 of 8 results.