A077221
a(0) = 0 and then alternately even and odd numbers in increasing order such that the sum of any two successive terms is a square.
Original entry on oeis.org
0, 1, 8, 17, 32, 49, 72, 97, 128, 161, 200, 241, 288, 337, 392, 449, 512, 577, 648, 721, 800, 881, 968, 1057, 1152, 1249, 1352, 1457, 1568, 1681, 1800, 1921, 2048, 2177, 2312, 2449, 2592, 2737, 2888, 3041, 3200, 3361, 3528, 3697, 3872, 4049, 4232
Offset: 0
From _Omar E. Pol_, Feb 16 2014: (Start)
Illustration of initial terms as a cellular automaton:
.
. O O O O O O O
. O O O O O O O
. O O O O O O O O O O
. O O O O O O O O O O
. O O O O O O O O O O
. O O O O O O O
. O O O O O O O
.
. 1 8 17 32
.
(End)
A047524
Numbers that are congruent to {2, 7} mod 8.
Original entry on oeis.org
2, 7, 10, 15, 18, 23, 26, 31, 34, 39, 42, 47, 50, 55, 58, 63, 66, 71, 74, 79, 82, 87, 90, 95, 98, 103, 106, 111, 114, 119, 122, 127, 130, 135, 138, 143, 146, 151, 154, 159, 162, 167, 170, 175, 178, 183, 186, 191, 194, 199, 202, 207, 210, 215, 218, 223, 226, 231, 234
Offset: 1
-
Filtered([0..250],n->n mod 8=2 or n mod 8=7); # Muniru A Asiru, Aug 06 2018
-
seq(coeff(series(x*(2+5*x+x^2)/((1+x)*(1-x)^2), x,n+1),x,n),n=1..60); # Muniru A Asiru, Aug 06 2018
-
Select[Range[300],MemberQ[{2,7},Mod[#,8]]&] (* or *)
LinearRecurrence[ {1,1,-1},{2,7,10},60] (* Harvey P. Dale, Nov 05 2017 *)
CoefficientList[ Series[(x^2 + 5x + 2)/((x - 1)^2 (x + 1)), {x, 0, 60}], x] (* Robert G. Wilson v, Aug 07 2018 *)
-
makelist(4*n - mod(n,2) - 1, n, 1, 100); /* Franck Maminirina Ramaharo, Aug 06 2018 */
-
is(n) = #setintersect([n%8], [2, 7]) > 0 \\ Felix Fröhlich, Aug 06 2018
-
def A047524(n): return (n<<2)-1-(n&1) # Chai Wah Wu, Mar 30 2024
A077591
Maximum number of regions into which the plane can be divided using n (concave) quadrilaterals.
Original entry on oeis.org
1, 2, 18, 50, 98, 162, 242, 338, 450, 578, 722, 882, 1058, 1250, 1458, 1682, 1922, 2178, 2450, 2738, 3042, 3362, 3698, 4050, 4418, 4802, 5202, 5618, 6050, 6498, 6962, 7442, 7938, 8450, 8978, 9522, 10082, 10658, 11250, 11858, 12482, 13122, 13778
Offset: 0
Joshua Zucker and the Castilleja School MathCounts club, Nov 07 2002
a(2) = 18 if you draw two concave quadrilaterals such that all four sides of one cross all four sides of the other.
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Keyang Li, when n=1, number of regions is 2; when n=2, maximum number of regions is 18
- Keyang Li, when n=3, maximum number of regions is 50
- Index entries for linear recurrences with constant coefficients, signature (3, -3, 1).
-
Concatenation([1], List([1..2000], n->8*n^2 - 8*n + 2)); # Muniru A Asiru, Jan 29 2018
-
A077591:=n->`if`(n=0, 1, 8*n^2 - 8*n + 2); seq(A077591(n), n=0..50); # Wesley Ivan Hurt, Mar 12 2014
-
Table[2*(4*n^2 - 4*n + 1), {n,0,50}] (* G. C. Greubel, Jul 15 2017 *)
-
isok(n) = (sod = sumdiv(n, d, (d%2)*d)) && (sed = sumdiv(n, d, (1 - d%2)*d)) && (eulerphi(sod) == eulerphi(sed)); \\ from Michel Lagneau comment; Michel Marcus, Mar 15 2014
A157914
a(n) = 8*n^2 - 1.
Original entry on oeis.org
7, 31, 71, 127, 199, 287, 391, 511, 647, 799, 967, 1151, 1351, 1567, 1799, 2047, 2311, 2591, 2887, 3199, 3527, 3871, 4231, 4607, 4999, 5407, 5831, 6271, 6727, 7199, 7687, 8191, 8711, 9247, 9799, 10367, 10951, 11551, 12167, 12799, 13447, 14111, 14791
Offset: 1
-
I:=[7, 31, 71]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..50]];
-
Table[8n^2-1,{n,50}]
LinearRecurrence[{3,-3,1},{7,31,71},50] (* Harvey P. Dale, Jul 16 2025 *)
-
a(n)=8*n^2-1 \\ Charles R Greathouse IV, Sep 03 2011
A195241
Expansion of (1-x+19*x^3-3*x^4)/(1-x)^3.
Original entry on oeis.org
1, 2, 3, 23, 59, 111, 179, 263, 363, 479, 611, 759, 923, 1103, 1299, 1511, 1739, 1983, 2243, 2519, 2811, 3119, 3443, 3783, 4139, 4511, 4899, 5303, 5723, 6159, 6611, 7079, 7563, 8063, 8579, 9111, 9659, 10223, 10803, 11399, 12011, 12639, 13283, 13943
Offset: 0
Cf.
A033585,
A069129,
A077221,
A102083,
A139098,
A139271-
A139277,
A139592,
A139593,
A188135,
A194268,
A194431,
A195605 [incomplete list].
-
m:=44; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x+19*x^3-3*x^4)/(1-x)^3));
-
CoefficientList[Series[(1 - x + 19 x^3 - 3 x^4)/(1 - x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Mar 26 2013 *)
LinearRecurrence[{3,-3,1},{1,2,3,23,59},50] (* Harvey P. Dale, Dec 04 2022 *)
-
makelist(coeff(taylor((1-x+19*x^3-3*x^4)/(1-x)^3, x, 0, n), x, n), n, 0, 43);
-
Vec((1-x+19*x^3-3*x^4)/(1-x)^3+O(x^44))
A347533
Array A(n,k) where A(n,0) = n and A(n,k) = (k*n + 1)^2 - A(n,k-1), n > 0, read by ascending antidiagonals.
Original entry on oeis.org
1, 2, 3, 3, 7, 6, 4, 13, 18, 10, 5, 21, 36, 31, 15, 6, 31, 60, 64, 50, 21, 7, 43, 90, 109, 105, 71, 28, 8, 57, 126, 166, 180, 151, 98, 36, 9, 73, 168, 235, 275, 261, 210, 127, 45, 10, 91, 216, 316, 390, 401, 364, 274, 162, 55, 11, 111, 270, 409, 525, 571, 560, 477, 351, 199, 66
Offset: 1
Array, A(n, k), begins:
1 3 6 10 15 21 28 36 45 ... A000217;
2 7 18 31 50 71 98 127 162 ... A195605;
3 13 36 64 105 151 210 274 351 ...
4 21 60 109 180 261 364 477 612 ...
5 31 90 166 275 401 560 736 945 ...
6 43 126 235 390 571 798 1051 1350 ...
7 57 168 316 525 771 1078 1422 1827 ...
8 73 216 409 680 1001 1400 1849 2376 ...
9 91 270 514 855 1261 1764 2332 2997 ...
Antidiagonals, T(n, k), begin as:
1;
2, 3;
3, 7, 6;
4, 13, 18, 10;
5, 21, 36, 31, 15;
6, 31, 60, 64, 50, 21;
7, 43, 90, 109, 105, 71, 28;
8, 57, 126, 166, 180, 151, 98, 36;
9, 73, 168, 235, 275, 261, 210, 127, 45;
10, 91, 216, 316, 390, 401, 364, 274, 162, 55;
Family of sequences (k*n + 1)^2:
A016754 (k=2),
A016778 (k=3),
A016814 (k=4),
A016862 (k=5),
A016922 (k=6),
A016994 (k=7),
A017078 (k=8),
A017174 (k=9),
A017282 (k=10),
A017402 (k=11),
A017534 (k=12),
A134934 (k=14).
-
A347533:= func< n,k | (1/2)*((k*(n-k)+1)*((k+1)*(n-k)+1) +(-1)^k*(n-k- 1)) >;
[A347533(n,k): k in [0..n-1], n in [1..13]]; // G. C. Greubel, Dec 25 2022
-
A[n_, 0]:= n; A[n_, k_]:= (k*n+1)^2 -A[n,k-1]; Table[Function[n, A[n, k]][m-k+1], {m,0,10}, {k,0,m}]//Flatten (* Michael De Vlieger, Oct 27 2021 *)
-
def A347533(n,k): return (1/2)*((k*(n-k)+1)*((k+1)*(n-k)+1) +(-1)^k*(n-k- 1))
flatten([[A347533(n,k) for k in range(n)] for n in range(1,14)]) # G. C. Greubel, Dec 25 2022
Showing 1-6 of 6 results.
Comments