cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A001105 a(n) = 2*n^2.

Original entry on oeis.org

0, 2, 8, 18, 32, 50, 72, 98, 128, 162, 200, 242, 288, 338, 392, 450, 512, 578, 648, 722, 800, 882, 968, 1058, 1152, 1250, 1352, 1458, 1568, 1682, 1800, 1922, 2048, 2178, 2312, 2450, 2592, 2738, 2888, 3042, 3200, 3362, 3528, 3698, 3872, 4050, 4232, 4418
Offset: 0

Views

Author

Bernd.Walter(AT)frankfurt.netsurf.de

Keywords

Comments

Number of edges of the complete bipartite graph of order 3n, K_{n,2n}. - Roberto E. Martinez II, Jan 07 2002
"If each period in the periodic system ends in a rare gas ..., the number of elements in a period can be found from the ordinal number n of the period by the formula: L = ((2n+3+(-1)^n)^2)/8..." - Nature, Jun 09 1951; Nature 411 (Jun 07 2001), p. 648. This produces the present sequence doubled up.
Let z(1) = i = sqrt(-1), z(k+1) = 1/(z(k)+2i); then a(n) = (-1)*Imag(z(n+1))/Real(z(n+1)). - Benoit Cloitre, Aug 06 2002
Maximum number of electrons in an atomic shell with total quantum number n. Partial sums of A016825. - Jeremy Gardiner, Dec 19 2004
Arithmetic mean of triangular numbers in pairs: (1+3)/2, (6+10)/2, (15+21)/2, ... . - Amarnath Murthy, Aug 05 2005
These numbers form a pattern on the Ulam spiral similar to that of the triangular numbers. - G. Roda, Oct 20 2010
Integral areas of isosceles right triangles with rational legs (legs are 2n and triangles are nondegenerate for n > 0). - Rick L. Shepherd, Sep 29 2009
Even squares divided by 2. - Omar E. Pol, Aug 18 2011
Number of stars when distributed as in the U.S.A. flag: n rows with n+1 stars and, between each pair of these, one row with n stars (i.e., n-1 of these), i.e., n*(n+1)+(n-1)*n = 2*n^2 = A001105(n). - César Eliud Lozada, Sep 17 2012
Apparently the number of Dyck paths with semilength n+3 and an odd number of peaks and the central peak having height n-3. - David Scambler, Apr 29 2013
Sum of the partition parts of 2n into exactly two parts. - Wesley Ivan Hurt, Jun 01 2013
Consider primitive Pythagorean triangles (a^2 + b^2 = c^2, gcd(a, b) = 1) with hypotenuse c (A020882) and respective odd leg a (A180620); sequence gives values c-a, sorted with duplicates removed. - K. G. Stier, Nov 04 2013
Number of roots in the root systems of type B_n and C_n (for n > 1). - Tom Edgar, Nov 05 2013
Area of a square with diagonal 2n. - Wesley Ivan Hurt, Jun 18 2014
This sequence appears also as the first and second member of the quartet [a(n), a(n), p(n), p(n)] of the square of [n, n, n+1, n+1] in the Clifford algebra Cl_2 for n >= 0. p(n) = A046092(n). See an Oct 15 2014 comment on A147973 where also a reference is given. - Wolfdieter Lang, Oct 16 2014
a(n) are the only integers m where (A000005(m) + A000203(m)) = (number of divisors of m + sum of divisors of m) is an odd number. - Richard R. Forberg, Jan 09 2015
a(n) represents the first term in a sum of consecutive integers running to a(n+1)-1 that equals (2n+1)^3. - Patrick J. McNab, Dec 24 2016
Also the number of 3-cycles in the (n+4)-triangular honeycomb obtuse knight graph. - Eric W. Weisstein, Jul 29 2017
Also the Wiener index of the n-cocktail party graph for n > 1. - Eric W. Weisstein, Sep 07 2017
Numbers represented as the palindrome 242 in number base B including B=2 (binary), 3 (ternary) and 4: 242(2)=18, 242(3)=32, 242(4)=50, ... 242(9)=200, 242(10)=242, ... - Ron Knott, Nov 14 2017
a(n) is the square of the hypotenuse of an isosceles right triangle whose sides are equal to n. - Thomas M. Green, Aug 20 2019
The sequence contains all odd powers of 2 (A004171) but no even power of 2 (A000302). - Torlach Rush, Oct 10 2019
From Bernard Schott, Aug 31 2021 and Sep 16 2021: (Start)
Apart from 0, integers such that the number of even divisors (A183063) is odd.
Proof: every n = 2^q * (2k+1), q, k >= 0, then 2*n^2 = 2^(2q+1) * (2k+1)^2; now, gcd(2, 2k+1) = 1, tau(2^(2q+1)) = 2q+2 and tau((2k+1)^2) = 2u+1 because (2k+1)^2 is square, so, tau(2*n^2) = (2q+2) * (2u+1).
The 2q+2 divisors of 2^(2q+1) are {1, 2, 2^2, 2^3, ..., 2^(2q+1)}, so 2^(2q+1) has 2q+1 even divisors {2^1, 2^2, 2^3, ..., 2^(2q+1)}.
Conclusion: these 2q+1 even divisors create with the 2u+1 odd divisors of (2k+1)^2 exactly (2q+1)*(2u+1) even divisors of 2*n^2, and (2q+1)*(2u+1) is odd. (End)
a(n) with n>0 are the numbers with period length 2 for Bulgarian and Mancala solitaire. - Paul Weisenhorn, Jan 29 2022
Number of points at L1 distance = 2 from any given point in Z^n. - Shel Kaphan, Feb 25 2023
Integer that multiplies (h^2)/(m*L^2) to give the energy of a 1-D quantum mechanical particle in a box whenever it is an integer multiple of (h^2)/(m*L^2), where h = Planck's constant, m = mass of particle, and L = length of box. - A. Timothy Royappa, Mar 14 2025

Examples

			a(3) = 18; since 2(3) = 6 has 3 partitions with exactly two parts: (5,1), (4,2), (3,3).  Adding all the parts, we get: 1 + 2 + 3 + 3 + 4 + 5 = 18. - _Wesley Ivan Hurt_, Jun 01 2013
		

References

  • Peter Atkins, Julio De Paula, and James Keeler, "Atkins' Physical Chemistry," Oxford University Press, 2023, p. 31.
  • Arthur Beiser, Concepts of Modern Physics, 2nd Ed., McGraw-Hill, 1973.
  • Martin Gardner, The Colossal Book of Mathematics, Classic Puzzles, Paradoxes and Problems, Chapter 2 entitled "The Calculus of Finite Differences," W. W. Norton and Company, New York, 2001, pages 12-13.
  • L. B. W. Jolley, "Summation of Series", Dover Publications, 1961, p. 44.
  • Alain M. Robert, A Course in p-adic Analysis, Springer-Verlag, 2000, p. 213.

Crossrefs

Cf. numbers of the form n*(n*k-k+4)/2 listed in A226488.
Cf. A058331 and A247375. - Bruno Berselli, Sep 16 2014
Cf. A194715 (4-cycles in the triangular honeycomb obtuse knight graph), A290391 (5-cycles), A290392 (6-cycles). - Eric W. Weisstein, Jul 29 2017
Integers such that: this sequence (the number of even divisors is odd), A028982 (the number of odd divisors is odd), A028983 (the number of odd divisors is even), A183300 (the number of even divisors is even).

Programs

Formula

a(n) = (-1)^(n+1) * A053120(2*n, 2).
G.f.: 2*x*(1+x)/(1-x)^3.
a(n) = A100345(n, n).
Sum_{n>=1} 1/a(n) = Pi^2/12 =A072691. [Jolley eq. 319]. - Gary W. Adamson, Dec 21 2006
a(n) = A049452(n) - A033991(n). - Zerinvary Lajos, Jun 12 2007
a(n) = A016742(n)/2. - Zerinvary Lajos, Jun 20 2008
a(n) = 2 * A000290(n). - Omar E. Pol, May 14 2008
a(n) = 4*n + a(n-1) - 2, n > 0. - Vincenzo Librandi
a(n) = A002378(n-1) + A002378(n). - Joerg M. Schuetze (joerg(AT)cyberheim.de), Mar 08 2010 [Corrected by Klaus Purath, Jun 18 2020]
a(n) = A176271(n,k) + A176271(n,n-k+1), 1 <= k <= n. - Reinhard Zumkeller, Apr 13 2010
a(n) = A007607(A000290(n)). - Reinhard Zumkeller, Feb 12 2011
For n > 0, a(n) = 1/coefficient of x^2 in the Maclaurin expansion of 1/(cos(x)+n-1). - Francesco Daddi, Aug 04 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Artur Jasinski, Nov 24 2011
a(n) = A070216(n,n) for n > 0. - Reinhard Zumkeller, Nov 11 2012
a(n) = A014132(2*n-1,n) for n > 0. - Reinhard Zumkeller, Dec 12 2012
a(n) = A000217(n) + A000326(n). - Omar E. Pol, Jan 11 2013
(a(n) - A000217(k))^2 = A000217(2*n-1-k)*A000217(2*n+k) + n^2, for all k. - Charlie Marion, May 04 2013
a(n) = floor(1/(1-cos(1/n))), n > 0. - Clark Kimberling, Oct 08 2014
a(n) = A251599(3*n-1) for n > 0. - Reinhard Zumkeller, Dec 13 2014
a(n) = Sum_{j=1..n} Sum_{i=1..n} ceiling((i+j-n+4)/3). - Wesley Ivan Hurt, Mar 12 2015
a(n) = A002061(n+1) + A165900(n). - Torlach Rush, Feb 21 2019
E.g.f.: 2*exp(x)*x*(1 + x). - Stefano Spezia, Oct 12 2019
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/24 (A222171). - Amiram Eldar, Jul 03 2020
From Amiram Eldar, Feb 03 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = sqrt(2)*sinh(Pi/sqrt(2))/Pi.
Product_{n>=1} (1 - 1/a(n)) = sqrt(2)*sin(Pi/sqrt(2))/Pi. (End)

A069894 Centered square numbers: a(n) = 4*n^2 + 4*n + 2.

Original entry on oeis.org

2, 10, 26, 50, 82, 122, 170, 226, 290, 362, 442, 530, 626, 730, 842, 962, 1090, 1226, 1370, 1522, 1682, 1850, 2026, 2210, 2402, 2602, 2810, 3026, 3250, 3482, 3722, 3970, 4226, 4490, 4762, 5042, 5330, 5626, 5930, 6242, 6562, 6890, 7226, 7570, 7922, 8282
Offset: 0

Views

Author

Glenn B. Cox (igloos_r_us(AT)canada.com), Apr 10 2002

Keywords

Comments

Any number may be substituted for y to yield similar sequences. The number set used determines values given (i.e., integer yields integer). All centered square integers in the set of integers may be found by this formula.
1/2 + 1/10 + 1/26 + ... = (Pi/4)*tanh(Pi/2) [Jolley]. - Gary W. Adamson, Dec 21 2006
For n > 0, a(n-1) is the number of triples (w, x, y) having all terms in {0, ..., n} and min(|w - x|, |x - y|) = 1. - Clark Kimberling, Jun 12 2012
Consider the primitive Pythagorean triples (x(n), y(n), z(n) = y(n) + 1) with n >= 0, and x(n) = 2*n + 1, y(n) = 2*n*(n + 1), z(n) = 2*n*(n + 1) + 1. The sequence, a(n), is 2*z(n). - George F. Johnson, Oct 22 2012
Ulam's spiral (SE corner). See the Wikipedia link. - Kival Ngaokrajang, Jul 25 2014
Conference matrix orders (A000952) of the form n-1 is a perfect square are all in this sequence. All values less than 1000 are conference matrices except for 226 which is still an open question (Balonin & Seberry 2014). - Colin Hall, Nov 21 2018
For n > 0, a(n-1) is the number of maximum number of regions into which the plane can be divided using n convex quadrilaterals. Related: A077588 A077591. - Keyang Li, Jun 17 2022

Examples

			If y = 3, then 81 + 144 = 225; if y = 4, then 12^2 + 16^2 = 20^2; 7^2 + 24^2 = 25^2 = 15^2 + 20^2.
		

References

  • L. B. W. Jolley, "Summation of Series", Dover Publications, 1961, p. 176.

Crossrefs

Programs

Formula

(y*(2*x + 1))^2 + (y*(2*x^2 + 2*x))^2 = (y*(2*x^2 + 2*x + 1))^2, where y = 2. If a^2 + b^2 = c^2, then c^2 = y^2*(4*x^4 + 8*x^3 + 8*x^2 + 4*x + 1). Also 2*A001844.
a(n) = (2*n + 1)^2 + 1. - Vladimir Joseph Stephan Orlovsky, Nov 10 2008 [Corrected by R. J. Mathar, Sep 16 2009]
a(n) = 8*n + a(n-1) for n > 0, a(0)=2. - Vincenzo Librandi, Aug 08 2010
From George F. Johnson, Oct 22 2012: (Start)
G.f.: 2*(1 + x)^2/(1 - x)^3, a(0) = 2, a(1) = 10.
a(n+1) = a(n) + 4 + 4*sqrt(a(n) - 1).
a(n-1) * a(n+1) = (a(n)-4)^2 + 16.
a(n) - 1 = (2*n+1)^2 = A016754(n) for n > 0.
(a(n+1) - a(n-1))/8 = sqrt(a(n) - 1).
a(n+1) = 2*a(n) - a(n-1) + 8 for n > 2, a(0)=2, a(1)=10, a(2)=26.
a(n+1) = 3*a(n) - 3*a(n-1) + a(n-2) for n > 3; a(0)=2, a(1)=10, a(2)=26, a(3)=50.
a(n) = A033996(n) + 2 = A002522(2n + 1).
a(n)^2 = A033996(n)^2 + A016825(n)^2. (End)
a(n) = A001105(n) + A001105(n+1). - Bruno Berselli, Jul 03 2017
E.g.f.: 2*(1 + 4*x + 2*x^2)*exp(x). - G. C. Greubel, Nov 21 2018
a(n) = A261327(4*n+2). - Paul Curtz, Dec 23 2021
a(n) = 2*A001844(n) = 4*A000217(n) + 2*A002061(n+1). - Klaus Purath, Aug 13 2025

Extensions

Edited by Robert G. Wilson v, Apr 11 2002
Offset corrected by Charles R Greathouse IV, Jul 25 2010

A071974 Numerator of rational number i/j such that Sagher map sends i/j to n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 4, 1, 3, 1, 2, 1, 1, 1, 1, 5, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 4, 7, 5, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 8, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 5, 2, 1, 1, 1, 4, 9, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 7, 3, 10, 1, 1, 1, 1
Offset: 1

Views

Author

N. J. A. Sloane, Jun 19 2002

Keywords

Comments

The Sagher map sends Product p_i^e_i / Product q_i^f_i (p_i and q_i being distinct primes) to Product p_i^(2e_i) * Product q_i^(2f_i-1). This is multiplicative.

Examples

			The Sagher map sends the following fractions to 1, 2, 3, 4, ...: 1/1, 1/2, 1/3, 2/1, 1/5, 1/6, 1/7, 1/4, 3/1, ...
		

Crossrefs

Cf. A071975. Differs from A056622 at a(32).
For other bijective mappings from integers to positive rationals see A002487, A020652/A020653, A038568/A038569, A229994/A077610, A295515.
Cf. A307868.

Programs

  • Haskell
    a071974 n = product $ zipWith (^) (a027748_row n) $
       map (\e -> (1 - e `mod` 2) * e `div` 2) $ a124010_row n
    -- Reinhard Zumkeller, Jun 15 2012
    
  • Mathematica
    f[{p_, a_}] := If[EvenQ[a], p^(a/2), 1]; a[n_] := Times@@(f/@FactorInteger[n])
    Table[Sqrt@ SelectFirst[Reverse@ Divisors@ n, And[IntegerQ@ Sqrt@ #, CoprimeQ[#, n/#]] &], {n, 104}] (* Michael De Vlieger, Dec 06 2018 *)
  • PARI
    a(n)=local(v=factor(n)~); prod(k=1,length(v),if(v[2,k]%2,1,v[1,k]^(v[2,k]/2)))
    
  • Python
    from math import prod
    from sympy import factorint
    def A071974(n): return prod(p**(e>>1) for p, e in factorint(n).items() if e&1^1) # Chai Wah Wu, Jul 27 2024

Formula

If n=Product p_i^e_i, then a_n=Product p_i^f(e_i), where f(n)=n/2 if n is even and f(n)=0 if n is odd. - Reiner Martin, Jul 08 2002
a(n^2) = n, A071975(n^2) = 1, cf. A000290; a(2*(2*n-1)^2) = 2*n+1, A071975(2*(2*n-1)^2) = 2, cf. A077591. - Reinhard Zumkeller, Jul 10 2011
From Amiram Eldar, Nov 02 2023, Jul 26 2024: (Start)
a(n) = sqrt(A350388(n)) (square root of largest unitary divisor of n that is a square).
Dirichlet g.f.: zeta(2*s) * zeta(2*s-1) * Product_{p prime} (1 + 1/p^s - 1/p^(2*s) - 1/p^(3*s-1)). (End)
From Vaclav Kotesovec, May 05 2025: (Start)
Let f(s) = Product_{p prime} (1 - (p^s + p)/((p^s + 1)*p^(2*s))).
Dirichlet g.f.: zeta(s) * zeta(2*s-1) * f(s).
Sum_{k=1..n} a(k) ~ f(1) * n * (log(n) + 3*gamma - 1 + f'(1)/f(1)) / 2, where
f(1) = A307868 = Product_{p prime} (1 - 2/(p*(1+p))) = 0.4716806136129978680752356330804820874259263820069868836357372554177321...
f'(1) = f(1) * Sum_{p prime} (5*p+3)*log(p) / ((p+1)*(p^2+p-2)) = f(1) * 2.1244279471327068377850377690765768532203174482128717024402373817115555...
and gamma is the Euler-Mascheroni constant A001620. (End)

Extensions

More terms from Reiner Martin, Jul 08 2002
Additional references supplied by Kevin Ryde added by N. J. A. Sloane, May 31 2012

A077588 Maximum number of regions into which the plane is divided by n triangles.

Original entry on oeis.org

1, 2, 8, 20, 38, 62, 92, 128, 170, 218, 272, 332, 398, 470, 548, 632, 722, 818, 920, 1028, 1142, 1262, 1388, 1520, 1658, 1802, 1952, 2108, 2270, 2438, 2612, 2792, 2978, 3170, 3368, 3572, 3782, 3998, 4220, 4448, 4682, 4922, 5168, 5420, 5678, 5942, 6212, 6488
Offset: 0

Views

Author

Joshua Zucker and the Castilleja School MathCounts club, Nov 07 2002

Keywords

Examples

			a(2) = 8 because a Star of David divides the plane into 8 regions: 6 triangles at the vertices, the interior hexagon, and the exterior.
		

Crossrefs

a(n) = A096777(3*n-1) for n > 0. - Reinhard Zumkeller, Dec 29 2007
For n > 0, a(n) = 2 * A005448(n). - Jon Perry, Apr 14 2013
a(n) = A242658(n) for n > 0. - Eric W. Weisstein, Nov 29 2017

Programs

Formula

a(n) = 3n^2 - 3n + 2 for n > 0.
Proof (from Joshua Zucker and N. J. A. Sloane, Dec 01 2017)
Represent the configuration of n triangles by a planar graph with a node for each vertex of the triangles and for each intersection point. Let there be v_n nodes and e_n edges. By classical graph theory, a(n) = e_n - v_n + 2. When we go from n to n+1 triangles, each side of the new triangle can meet each side of the existing triangles at most twice, so Dv_n := v_{n+1}-v_n <= 6n.
Each of these intersection points increases the number of edges in the graph by 2, so De_n := e_{n+1}-e_n = 3 + 2*Dv_n, Da_n := a(n+1)-a(n) = 3 + Dv_n <= 3+6*n.
These upper bounds can be achieved by taking 3n points equally spaced around a circle and drawing n concentric overlapping equilateral triangles in the obvious way, and we achieve a(n) = 3n^2 - 3n + 2 (and v_n = 3n^2, e_n = 3n(2n-1)) for n>0. QED
a(n) is the nearest integer to (Sum_{k>=n} 1/k^2)/(Sum_{k>=n} 1/k^4). - Benoit Cloitre, Jun 12 2003
a(n) = a(n-1) + 6*n - 6 (with a(1) = 2). - Vincenzo Librandi, Dec 07 2010
For n > 0, a(n) = A002061(n-1) + A056220(n); and for n > 1, a(n) = A002061(n+1) + A056220(n-1). - Bruce J. Nicholson, Sep 22 2017

A195605 a(n) = (4*n*(n+2)+(-1)^n+1)/2 + 1.

Original entry on oeis.org

2, 7, 18, 31, 50, 71, 98, 127, 162, 199, 242, 287, 338, 391, 450, 511, 578, 647, 722, 799, 882, 967, 1058, 1151, 1250, 1351, 1458, 1567, 1682, 1799, 1922, 2047, 2178, 2311, 2450, 2591, 2738, 2887, 3042, 3199, 3362, 3527, 3698, 3871, 4050, 4231, 4418, 4607, 4802
Offset: 0

Views

Author

Bruno Berselli, Sep 21 2011 - based on remarks and sequences by Omar E. Pol

Keywords

Comments

Sequence found by reading the numbers in increasing order on the vertical line containing 2 of the square spiral whose vertices are the triangular numbers (A000217) - see Pol's comments in other sequences visible in this numerical spiral.
Also A077591 (without first term) and A157914 interleaved.

Crossrefs

Cf. A047621 (contains first differences), A016754 (contains the sum of any two consecutive terms).

Programs

  • Magma
    [(4*n*(n+2)+(-1)^n+3)/2: n in [0..48]];
    
  • Mathematica
    CoefficientList[Series[(2 + 3 x + 4 x^2 - x^3) / ((1 + x) (1 - x)^3), {x, 0, 50}], x] (* Vincenzo Librandi, Aug 19 2013 *)
    LinearRecurrence[{2,0,-2,1},{2,7,18,31},50] (* Harvey P. Dale, Jan 21 2017 *)
  • PARI
    for(n=0, 48, print1((4*n*(n+2)+(-1)^n+3)/2", "));

Formula

G.f.: (2+3*x+4*x^2-x^3)/((1+x)*(1-x)^3).
a(n) = a(-n-2) = 2*a(n-1)-2*a(n-3)+a(n-4).
a(n) = A047524(A000982(n+1)).
Sum_{n>=0} 1/a(n) = 1/2 + Pi^2/16 - cot(Pi/(2*sqrt(2)))*Pi/(4*sqrt(2)). - Amiram Eldar, Mar 06 2023

A165943 a(n) = A061037(7*n+2).

Original entry on oeis.org

0, 77, 63, 525, 56, 1365, 483, 2597, 210, 4221, 1295, 6237, 462, 8645, 2499, 11445, 812, 14637, 4095, 18221, 1260, 22197, 6083, 26565, 1806, 31325, 8463, 36477, 2450, 42021, 11235, 47957, 3192, 54285, 14399, 61005, 4032, 68117, 17955, 75621, 4970
Offset: 0

Views

Author

Paul Curtz, Oct 01 2009

Keywords

Comments

The (2k+1)-sections A061037((2*k+1)*n+2) are multiples of 2k+1:
0,...21,...15,..117,...12,..285,...99,..525,...42,..837,..255, k=1, A142590
0,...45,...35,..285,...30,..725,..255,.1365,..110,.2205,..675, k=2, A165248
0,...77,...63,..525,...56,.1365,..483,.2597,..210,.4221,.1295, k=3, here
0,..117,...99,..837,...90,.2205,..783,.4221,..342,.6885,.2115, k=4,
0,..165,..143,.1221,..132,.3245,.1155,.6237,..506,10197,.3135, k=5
0,..221,..195,.1677,..182,.4485,.1599,.8645,..702,14157,.4355, k=6
After division by 2k+1 these define a table T'(k,c) :
0,....7,....5,...39,....4,...95,...33,..175,...14,..279,...85, k=1, A142883
0,....9,....7,...57,....6,..145,...51,..273,...22,..441,..135, k=2
0,...11,....9,...75,....8,..195,...69,..371,...30,..603,..185, k=3
0,...13,...11,...93,...10,..245,...87,..469,...38,..765,..235, k=4
0,...15,...13,..111,...12,..295,..105,..567,...46,..927,..285, k=5
0,...17,...15,..129,...14,..345,..123,..665,...54,.1089,..335, k=6
Differences downwards each second column in this second table are 2 = 7-5 = 9-7..; 18 = 57-39 = 75-57..; 50 = 145-95 = 195-145... = A077591(n+1) = 2*A016754.
The difference T'(k+1,c)-T'(k,c) is 0, 2, 2, 18, 2, 50, 18, 98, 8 ... = 2*A181318(c) =A061037(c-2)+A061037(c+2). - Paul Curtz, Mar 12 2012
Let b(n)= a(n) mod 11. The sequence b(n) has the property b(n+44) = b(n) with the first 43 values being {0, 0 , 8, 1, 1, 10, 1, 1, 8, 8, 0, 0, 10, 5, 5, 9, 7, 1, 5, 6, 10, 7, 0, 2, 1, 1, 8, 1, 5, 8, 2, 0, 8, 10, 6, 5, 10, 7, 9, 5, 0, 10, 0}. - G. C. Greubel, Apr 18 2016

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(7*x*(11 + 9*x + 75*x^2 + 8*x^3 + 162*x^4 + 42*x^5 + 146*x^6 + 6*x^7 + 51*x^8 + 5*x^9 + 3*x^10)/((1 - x)^3*(1 + x)^3*(1 + x^2)^3))); // G. C. Greubel, Sep 19 2018
  • Maple
    seq(numer(1/4 - 1/(7*n+2)^2), n=0..50); # Robert Israel, Apr 20 2016
  • Mathematica
    Table[Numerator[1/4 - 1/(7 n + 2)^2], {n, 0, 40}] (* Michael De Vlieger, Apr 19 2016 *)
    CoefficientList[Series[7*x*(11 + 9*x + 75*x^2 + 8*x^3 + 162*x^4 + 42*x^5 + 146*x^6 + 6*x^7 + 51*x^8 + 5*x^9 + 3*x^10)/((1 - x)^3*(1 + x)^3*(1 + x^2)^3), {x, 0, 50}], x] (* G. C. Greubel, Sep 19 2018 *)
  • PARI
    a(n) = numerator(1/4 - 1/(7*n+2)^2); \\  Altug Alkan, Apr 18 2016
    
  • PARI
    x='x+O('x^50); concat([0], Vec(7*x*(11 + 9*x + 75*x^2 + 8*x^3 + 162*x^4 + 42*x^5 + 146*x^6 + 6*x^7 + 51*x^8 + 5*x^9 + 3*x^10)/((1 - x)^3*(1 + x)^3*(1 + x^2)^3))) \\ G. C. Greubel, Sep 19 2018
    

Formula

a(n) = 3*a(n-4) - 3*a(n-8) + a(n-12), n>12. - Conjectured by R. J. Mathar, Mar 02 2010, proved by Robert Israel, Apr 20 2016
From Ilya Gutkovskiy, Apr 19 2016: (Start)
G.f.: 7*x*(11 + 9*x + 75*x^2 + 8*x^3 + 162*x^4 + 42*x^5 + 146*x^6 + 6*x^7 + 51*x^8 + 5*x^9 + 3*x^10)/((1 - x)^3*(1 + x)^3*(1 + x^2)^3).
a(n) = -7*n*(7*n + 4)*(27*(-1)^n + 6*cos((Pi*n)/2) - 37)/64. (End)

Extensions

Partially edited and extended by R. J. Mathar, Mar 02 2010
Removed division by 7 in definition and formula - R. J. Mathar, Mar 23 2010

A185869 (Odd,even)-polka dot array in the natural number array A000027; read by antidiagonals.

Original entry on oeis.org

2, 7, 9, 16, 18, 20, 29, 31, 33, 35, 46, 48, 50, 52, 54, 67, 69, 71, 73, 75, 77, 92, 94, 96, 98, 100, 102, 104, 121, 123, 125, 127, 129, 131, 133, 135, 154, 156, 158, 160, 162, 164, 166, 168, 170, 191, 193, 195, 197, 199, 201, 203, 205, 207, 209, 232, 234, 236, 238, 240, 242, 244, 246, 248, 250, 252, 277, 279, 281, 283, 285, 287, 289, 291, 293, 295, 297, 299, 326, 328, 330, 332, 334, 336, 338, 340, 342, 344, 346, 348, 350, 379, 381, 383, 385, 387, 389, 391, 393, 395, 397, 399, 401, 403, 405
Offset: 1

Views

Author

Clark Kimberling, Feb 05 2011

Keywords

Comments

This is the second of four polka dot arrays; see A185868.
row 1: A130883;
row 2: A100037;
row 3: A100038;
row 4: A100039;
col 1: A014107;
col 2: A033537;
col 3: A100040;
col 4: A100041;
diag (2,18,...): A077591;
diag (7,31,...): A157914;
diag (16,48,...): A035008;
diag (29,69,...): A108928;
antidiagonal sums: A033431;
antidiagonal sums: 2*(1^3, 2^3, 3^3, 4^3,...) = 2*A000578.
A060432(n) + n is odd if and only if n is in this sequence. - Peter Kagey, Feb 03 2016

Examples

			Northwest corner:
  2....7....16...29...46
  9....18...31...48...69
  20...33...50...71...96
  35...52...73...98...127
		

Crossrefs

Cf. A000027 (as an array), A060432, A185868, A185870, A185871.

Programs

  • Haskell
    a185869 n = a185869_list !! (n - 1)
    a185869_list = scanl (+) 2 $ a' 1
      where  a' n = 2 * n + 3 : replicate n 2 ++ a' (n + 1)
    -- Peter Kagey, Sep 02 2016
    
  • Mathematica
    f[n_,k_]:=2n-1+(2n+2k-3)(n+k-1);
    TableForm[Table[f[n,k],{n,1,10},{k,1,15}]]
    Table[f[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten
  • Python
    from math import isqrt, comb
    def A185869(n):
        a = (m:=isqrt(k:=n<<1))+(k>m*(m+1))
        x = n-comb(a,2)
        y = a-x+1
        return y*((y+(c:=x<<1)<<1)-5)+x*(c-3)+2 # Chai Wah Wu, Jun 18 2025

Formula

T(n,k) = 2n-1+(n+k-1)*(2n+2k-3), k>=1, n>=1.

A071975 Denominator of rational number i/j such that Sagher map sends i/j to n.

Original entry on oeis.org

1, 2, 3, 1, 5, 6, 7, 4, 1, 10, 11, 3, 13, 14, 15, 1, 17, 2, 19, 5, 21, 22, 23, 12, 1, 26, 9, 7, 29, 30, 31, 8, 33, 34, 35, 1, 37, 38, 39, 20, 41, 42, 43, 11, 5, 46, 47, 3, 1, 2, 51, 13, 53, 18, 55, 28, 57, 58, 59, 15, 61, 62, 7, 1, 65, 66, 67, 17, 69, 70, 71, 4, 73, 74, 3, 19, 77
Offset: 1

Views

Author

N. J. A. Sloane, Jun 19 2002

Keywords

Comments

The Sagher map sends Product p_i^e_i / Product q_i^f_i (p_i and q_i being distinct primes) to Product p_i^(2e_i) * Product q_i^(2f_i-1). This is multiplicative.

Examples

			The Sagher map sends the following fractions to 1, 2, 3, 4, ...: 1/1, 1/2, 1/3, 2/1, 1/5, 1/6, 1/7, 1/4, 3/1, ...
		

Crossrefs

Programs

  • Haskell
    a071975 n = product $ zipWith (^) (a027748_row n) $
       map (\e -> (e `mod` 2) * (e + 1) `div` 2) $ a124010_row n
    -- Reinhard Zumkeller, Jun 15 2012
  • Mathematica
    f[{p_, a_}] := If[OddQ[a], p^((a+1)/2), 1]; a[n_] := Times@@(f/@FactorInteger[n])
  • PARI
    a(n)=local(v=factor(n)~); prod(k=1,length(v),if(v[2,k]%2,v[1,k]^-(-v[2,k]\2),1))
    

Formula

If n = Product p_i^e_i, then a(n) = Product p_i^f(e_i), where f(n) = (n+1)/2 if n is odd and f(n) = 0 if n is even. - Reiner Martin, Jul 08 2002
From Reinhard Zumkeller, Jul 10 2011: (Start)
a(n^2) = 1, A071974(n^2) = n, cf. A000290.
a(2*(2*n-1)^2) = 2, A071974(2*(2*n-1)^2) = 2*n+1, cf. A077591.
a(2*(2*n-1)^2) = 2, A071974(2*(2*n-1)^2) = 2*n+1, cf. A077591. (End)
Sum_{k=1..n} a(k) ~ c * n^2, where c = (Pi^4*zeta(3)/180) * Product_{p prime} (1 - 1/p^2 - 1/p^3 + 1/p^4 - 1/p^5 + 1/p^6) = 0.3394877587... . - Amiram Eldar, Oct 30 2022

Extensions

More terms from Reiner Martin, Jul 08 2002

A179741 a(n) = (2*n+1)*(6*n-1).

Original entry on oeis.org

-1, 15, 55, 119, 207, 319, 455, 615, 799, 1007, 1239, 1495, 1775, 2079, 2407, 2759, 3135, 3535, 3959, 4407, 4879, 5375, 5895, 6439, 7007, 7599, 8215, 8855, 9519, 10207, 10919, 11655, 12415, 13199, 14007, 14839, 15695, 16575, 17479, 18407
Offset: 0

Views

Author

Paul Curtz, Jan 10 2011

Keywords

Crossrefs

Programs

Formula

a(n) = a(n-1) + 24*n + 16.
a(n) = 2*a(n-1) - a(n-2) + 16.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = A077591(n+1) + A061037(2*n-1).
From Bruno Berselli, Jan 25 2011: (Start)
G.f.: (-1 +18*x +7*x^2)/(1-x)^3.
a(n) = A184005(4*n) (n>0). (End)
E.g.f.: (-1 + 16*x + 12*x^2)*exp(x). - G. C. Greubel, Jul 22 2017
From Amiram Eldar, Oct 08 2023: (Start)
Sum_{n>=1} 1/a(n) = (3*log(3) - Pi*sqrt(3) + 4)/16.
Sum_{n>=1} (-1)^(n+1)/a(n) = (3*Pi - 2*sqrt(3)*log(sqrt(3)+2) - 4)/16. (End)

Extensions

Edited by N. J. A. Sloane, Jan 12 2011

A248881 Numbers n such that lambda(sum of even divisors of 2n) = lambda(sum of odd divisors of 2n) where lambda is the Carmichael function (A002322).

Original entry on oeis.org

1, 3, 5, 6, 9, 11, 13, 17, 18, 19, 25, 26, 27, 29, 36, 37, 38, 41, 43, 45, 49, 50, 53, 54, 59, 61, 63, 65, 67, 68, 72, 73, 74, 75, 81, 82, 83, 85, 86, 87, 89, 90, 95, 97, 98, 99, 100, 101, 103, 107, 109, 113, 117, 121, 122, 125, 126, 130, 131, 134, 137, 139
Offset: 1

Views

Author

Michel Lagneau, Mar 05 2015

Keywords

Comments

Number n such that A002322(A074400(n))= A002322(A000593(n)).
The squares of the form p^2 with p prime are in the sequence because the divisors of 2p^2 are {1,2,p,2p,p^2,2p^2} => sum of even divisors s0 = 2+2p+2p^2 = 2(p^2+p+p^2) and sum of odd divisors s1 = 1+p+p^2 and lambda(s0) = lambda(s1) = lambda(2*s0).
A majority of primes are in the sequence: 3, 5, 11, 13, 17, 19, 29, 37, 41, 43, 53, 59, 61, 67, 73, 83, 89, 97, 101, 103, 107, 109, 113, 131, 137, 139, 149, 157, 163, 173, 179, 181, 193, 197, ... but the primes 7, 23, 31, 47, 71, 79, 127, 151, 167, 191, 223, 239, 263, 367, 383, 431, ... are not in the sequence.

Examples

			18 is in the sequence because A002322(A074400(18))= A002322(78)= 12 and because A002322(A000593(18)) = A002322(13) = 12.
		

Crossrefs

Programs

  • Mathematica
    lst={};f[x_] := Plus @@ Select[Divisors[x], OddQ[#] &]; g[x_] := Plus @@ Select[Divisors[x], EvenQ[#]&]; Do[If[CarmichaelLambda[f[n]]== CarmichaelLambda[g[n]], AppendTo[lst,n/2]], {n, 1, 500}];lst
  • PARI
    a002322(n) = lcm(znstar(n)[2]);
    isok(n) = my(sod = sumdiv(2*n, d, d*(d%2))); my(sed = sigma(2*n) - sod); sod && sed && (a002322(sod) == a002322(sed)); \\ Michel Marcus, Mar 07 2015
Showing 1-10 of 17 results. Next